- Browse by Author
Browsing by Author "Putman, Timothy E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation(American Society for Microbiology, 2016-09-19) Muramatsu, Matthew K.; Brothwell, Julie A.; Steinman, Barry D.; Putman, Timothy E.; Rockey, Daniel D.; Nelson, David E.; Department of Microbiology & Immunology, IU School of MedicineChlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells.Item Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination(American Society for Microbiology, 2016-07-13) Brothwell, Julie A.; Muramatsu, Matthew K.; Toh, Evelyn; Rockey, Daniel D.; Putman, Timothy E.; Barta, Michael L.; Hefty, P. Scott; Suchland, Robert J.; Nelson, David E.; Department of Microbiology & Immunology, IU School of MedicineIntracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.