ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Purohit, Trupta"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combination of menin and kinase inhibitors as an effective treatment for leukemia with NUP98 translocations
    (Springer Nature, 2024) Miao, Hongzhi; Chen, Dong; Ropa, James; Purohit, Trupta; Kim, EunGi; Sulis, Maria-Luisa; Ferrando, Adolfo; Cierpicki, Tomasz; Grembecka, Jolanta; Microbiology and Immunology, School of Medicine
    Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.
  • Loading...
    Thumbnail Image
    Item
    Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity
    (Springer Nature, 2021-05-14) Rogawski, David S.; Deng, Jing; Li, Hao; Miao, Hongzhi; Borkin, Dmitry; Purohit, Trupta; Song, Jiho; Chase, Jennifer; Li, Shuangjiang; Ndoj, Juliano; Klossowski, Szymon; Kim, EunGi; Mao, Fengbiao; Zhou, Bo; Ropa, James; Krotoska, Marta Z.; Jin, Zhuang; Ernst, Patricia; Feng, Xiaomin; Huang, Gang; Nishioka, Kenichi; Kelly, Samantha; He, Miao; Wen, Bo; Sun, Duxin; Muntean, Andrew; Dou, Yali; Maillard, Ivan; Cierpicki, Tomasz; Grembecka, Jolanta; Microbiology and Immunology, School of Medicine
    ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.
  • Loading...
    Thumbnail Image
    Item
    Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo
    (Elsevier, 2015-04-13) Borkin, Dmitry; He, Shihan; Miao, Hongzhi; Kempinska, Katarzyna; Pollock, Jonathan; Chase, Jennifer; Purohit, Trupta; Malik, Bhavna; Zhao, Ting; Wang, Jingya; Wen, Bo; Zong, Hongliang; Jones, Morgan; Danet-Desnoyers, Gwenn; Guzman, Monica L.; Talpaz, Moshe; Bixby, Dale L.; Sun, Duxin; Hess, Jay L.; Muntean, Andrew G.; Maillard, Ivan; Cierpicki, Tomasz; Grembecka, Jolanta; Dean, IU School of Medicine
    Chromosomal translocations affecting mixed lineage leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University