ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Prosperi, Jenifer R."

Now showing 1 - 10 of 16
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Adenomatous Polyposis Coli loss controls cell cycle regulators and response to paclitaxel in MDA-MB-157 metaplastic breast cancer cells
    (PLOS, 2021-08-09) Astarita, Emily M.; Maloney, Sara M.; Hoover, Camden A.; Berkeley, Bronwyn J.; VanKlompenberg, Monica K.; Nair, T. Murlidharan; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Adenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in both PTX-treated APC shRNA1 and parental cells, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased baseline CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.
  • Loading...
    Thumbnail Image
    Item
    APC loss affects DNA damage repair causing doxorubicin resistance in breast cancer cells
    (Elsevier, 2019-12) Stefanski, Casey D.; Keffler, Kaitlyn; McClintock, Stephanie; Milac, Lauren; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Chemoresistance is one of the leading causes of cancer-related deaths in the United States. Triple negative breast cancer (TNBC), a subtype lacking the known breast cancer receptors used for targeted therapy, is reliant on chemotherapy as the standard of care. The Adenomatous Polyposis Coli (APC) tumor suppressor is mutated or hypermethylated in 70% of sporadic breast cancers with APC-deficient tumors resembling the TNBC subtype. Using mammary tumor cells from the ApcMin/+ mouse model crossed to the Polyoma middle T antigen (PyMT) transgenic model, we previously showed that APC loss decreased sensitivity to doxorubicin (DOX). Understanding the molecular basis for chemoresistance is essential for the advancement of novel therapeutic approaches to ultimately improve patient outcomes. Resistance can be caused via different methods, but here we focus on the DNA repair response with DOX treatment. We show that MMTV-PyMT;ApcMin/+ cells have decreased DNA damage following 24 hour DOX treatment compared to MMTV-PyMT;Apc+/+ cells. This decreased damage is first observed 24 hours post-treatment and continues throughout 24 hours of drug recovery. Activation of DNA damage response pathways (ATM, Chk1, and Chk2) are decreased at 24 hours DOX-treatment in MMTV-PyMT;ApcMin/+ cells compared to control cells, but show activation at earlier time points. Using inhibitors that target DNA damage repair kinases (ATM, ATR, and DNA-PK), we showed that ATM and DNA-PK inhibition increased DOX-induced apoptosis in the MMTV-PyMT;ApcMin/+ cells. In the current work, we demonstrated that APC loss imparts resistance through decreased DNA damage response, which can be attenuated through DNA repair inhibition, suggesting the potential clinical use of DNA repair inhibitions as combination therapy.
  • Loading...
    Thumbnail Image
    Item
    APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation
    (Impact Journals, 2017-11-01) VanKlompenberg, Monica K.; Leyden, Emily; Arnason, Anne H.; Zhang, Jian-Ting; Stefanski, Casey D.; Prosperi, Jenifer R.; Pharmacology and Toxicology, School of Medicine
    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus – Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT;ApcMin/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT;ApcMin/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT;ApcMin/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.
  • Loading...
    Thumbnail Image
    Item
    APC Loss Prevents Doxorubicin-Induced Cell Death by Increasing Drug Efflux and a Chemoresistant Cell Population in Breast Cancer
    (MDPI, 2023-04-21) Stefanski, Casey D.; Arnason, Anne; Maloney, Sara; Kotsen, Janna; Powers, Elizabeth; Zhang, Jian-Ting; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Chemoresistance is a major health concern affecting cancer patients. Resistance is multifactorial, with one mechanism being the increased expression of ABC transporters (such as MDR1 and MRP1), which are drug efflux transporters capable of preventing intracellular accumulation of drugs and cell death. Our lab showed that the loss of Adenomatous Polyposis Coli (APC) caused an intrinsic resistance to doxorubicin (DOX), potentially through an enhanced tumor-initiating cell (TIC) population and the increased activation of STAT3 mediating the expression of MDR1 in the absence of WNT being activated. Here, in primary mouse mammary tumor cells, the loss of APC decreased the accumulation of DOX while increasing the protein levels of MDR1 and MRP1. We demonstrated decreased APC mRNA and protein levels in breast cancer patients compared with normal tissue. Using patient samples and a panel of human breast cancer cell lines, we found no significant trend between APC and either MDR1 or MRP1. Since the protein expression patterns did not show a correlation between the ABC transporters and the expression of APC, we evaluated the drug transporter activity. In mouse mammary tumor cells, the pharmacological inhibition or genetic silencing of MDR1 or MRP1, respectively, decreased the TIC population and increased DOX-induced apoptosis, supporting the use of ABC transporter inhibitors as therapeutic targets in APC-deficient tumors.
  • Loading...
    Thumbnail Image
    Item
    APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology
    (Springer Nature, 2013-01-09) Odenwald, Matthew A.; Prosperi, Jenifer R.; Goss, Kathleen H.; Biochemistry and Molecular Biology, School of Medicine
    Background: The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods: The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results: APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions: These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and mesenchymal morphology of mammary tumor cells and suggest that APC loss during later stages of tumor progression might impact tumor cell dissemination or colonization.
  • Loading...
    Thumbnail Image
    Item
    Bcl-2 Up-Regulation Mediates Taxane Resistance Downstream of APC Loss
    (MDPI, 2024-06-19) Wise, Angelique R.; Maloney, Sara; Hering, Adam; Zabala, Sarah; Richmond, Grace E.; VanKlompenberg, Monica K.; Nair, Murlidharan T.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Triple-negative breast cancer (TNBC) patients are treated with traditional chemotherapy, such as the taxane class of drugs. One such drug, paclitaxel (PTX), can be effective in treating TNBC; however, many tumors will develop drug resistance, which can lead to recurrence. In order to improve patient outcomes and survival, there lies a critical need to understand the mechanism behind drug resistance. Our lab made the novel observation that decreased expression of the Adenomatous Polyposis Coli (APC) tumor suppressor using shRNA caused PTX resistance in the human TNBC cell line MDA-MB-157. In cells lacking APC, induction of apoptosis by PTX was decreased, which was measured through cleaved caspase 3 and annexin/PI staining. The current study demonstrates that CRISPR-mediated APC knockout in two other TNBC lines, MDA-MB-231 and SUM159, leads to PTX resistance. In addition, the cellular consequences and molecular mechanisms behind APC-mediated PTX response have been investigated through analysis of the BCL-2 family of proteins. We found a significant increase in the tumor-initiating cell population and increased expression of the pro-survival family member Bcl-2, which is widely known for its oncogenic behavior. ABT-199 (Venetoclax), is a BH3 mimetic that specifically targets Bcl-2. ABT-199 has been used as a single or combination therapy in multiple hematologic malignancies and has shown promise in multiple subtypes of breast cancer. To address the hypothesis that APC-induced Bcl-2 increase is responsible for PTX resistance, we combined treatment of PTX and ABT-199. This combination treatment of CRISPR-mediated APC knockout MDA-MB-231 cells resulted in alterations in apoptosis, suggesting that Bcl-2 inhibition restores PTX sensitivity in APC knockout breast cancer cells. Our studies are the first to show that Bcl-2 functional inhibition restores PTX sensitivity in APC mutant breast cancer cells. These studies are critical to advance better treatment regimens in patients with TNBC.
  • Loading...
    Thumbnail Image
    Item
    Combating CHK1 resistance in triple negative breast cancer: EGFR inhibition as potential combinational therapy
    (OAE Publishing, 2022-03-08) Stefanski, Casey D.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Triple negative breast cancer (TNBC) is marked by a lack of expression of the Estrogen Receptor, Progesterone Receptor, and human epidermal growth factor receptor 2. Therefore, targeted therapies are being investigated based on the expression profiles of tumors. Due to the potential for acquired and intrinsic resistance, there is a need for combination therapy to overcome resistance. In the article by Lee et al., the authors identify that, while prexasertib (a CHK1 inhibitor) lacks efficacy alone, combination with an EGFR inhibitor provides synergistic anti-tumor effects. Advances in targeted therapy for TNBC will benefit the clinical landscape for this disease, with this study initiating a new avenue of investigation.
  • Loading...
    Thumbnail Image
    Item
    Combating CHK1 resistance in triple negative breast cancer: EGFR inhibition as potential combinational therapy
    (OAE, 2022) Stefanski, Casey D.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Triple negative breast cancer (TNBC) is marked by a lack of expression of the Estrogen Receptor, Progesterone Receptor, and human epidermal growth factor receptor 2. Therefore, targeted therapies are being investigated based on the expression profiles of tumors. Due to the potential for acquired and intrinsic resistance, there is a need for combination therapy to overcome resistance. In the article by Lee et al., the authors identify that, while prexasertib (a CHK1 inhibitor) lacks efficacy alone, combination with an EGFR inhibitor provides synergistic anti-tumor effects. Advances in targeted therapy for TNBC will benefit the clinical landscape for this disease, with this study initiating a new avenue of investigation.
  • Loading...
    Thumbnail Image
    Item
    Editorial: Clinical implementation of precision oncology data to direct individualized and immunotherapy-based treatment strategies
    (Frontiers Media, 2025-06-13) Young, Nicholas A.; Prosperi, Jenifer R.; Freud, Aharon G.; Yee, Nelson S.; Petricoin, Emanuel F.; Biochemistry and Molecular Biology, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Effect of Adenomatous Polyposis Coli Loss on Tumorigenic Potential in Pancreatic Ductal Adenocarcinoma
    (MDPI, 2019-09-14) Cole, Jennifer M.; Simmons, Kaitlyn; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of Medicine
    Loss of the Adenomatous Polyposis Coli (APC) tumor suppressor in colorectal cancer elicits rapid signaling through the Wnt/β-catenin signaling pathway. In contrast to this well-established role of APC, recent studies from our laboratory demonstrated that APC functions through Wnt-independent pathways to mediate in vitro and in vivo models of breast tumorigenesis. Pancreatic ductal adenocarcinoma (PDAC) has an overall median survival of less than one year with a 5-year survival rate of 7.2%. APC is lost in a subset of pancreatic cancers, but the impact on Wnt signaling or tumor development is unclear. Given the lack of effective treatment strategies for pancreatic cancer, it is important to understand the functional implications of APC loss in pancreatic cancer cell lines. Therefore, the goal of this project is to study how APC loss affects Wnt pathway activation and in vitro tumor phenotypes. Using lentiviral shRNA, we successfully knocked down APC expression in six pancreatic cancer cell lines (AsPC-1, BxPC3, L3.6pl, HPAF-II, Hs 766T, MIA PaCa-2). No changes were observed in localization of β-catenin or reporter assays to assess β-catenin/TCF interaction. Despite this lack of Wnt/β-catenin pathway activation, the majority of APC knockdown cell lines exhibit an increase in cell proliferation. Cell migration assays showed that the BxPC-3 and L3.6pl cells were impacted by APC knockdown, showing faster wound healing in scratch wound assays. Interestingly, APC knockdown had no effect on gemcitabine treatment, which is the standard care for pancreatic cancer. It is important to understand the functional implications of APC loss in pancreatic cancer cells lines, which could be used as a target for therapeutics.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University