- Browse by Author
Browsing by Author "Prell, James S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Experimental Determination of Activation Energies for Covalent Bond Formation via Ion/Ion Reactions and Competing Processes(ACS, 2021) Cheung See Kit, Melanie; Shepherd, Samantha O.; Prell, James S.; Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceThe combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and noncovalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/sulfo-benzoyl-HOAt reagent anion long-lived complexes formed via ion/ion reactions. The ΔH‡ and ΔS‡ of major processes observed from collisional activation of long-lived gas-phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. The ΔG‡ values of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though the ΔG‡ values between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization.Item Fundamentals of ion mobility in the free molecular regime. Interlacing the past, present and future of ion mobility calculations(Taylor & Francis, 2020) Larriba-Andaluz, Carlos; Prell, James S.; Mechanical and Energy Engineering, School of Engineering and TechnologyWhile existing ion mobility calculators are capable of feats as impressive as calculating collision cross sections (CCS) within a few per cent and within a very reasonable time, the simplifications assumed in their estimations precludes them from being more precise, potentially overreaching with respect to the interpretation of existing calculations. With ion mobility instrumentation progressively reaching resolutions of several hundreds to thousands (accuracy in the range of ∼0.1%), a more accurate theoretical description of gas-phase ion mobility becomes necessary to correctly interpret experimental state-of-the-art separations. This manuscript entails an effort to consolidate the most relevant theoretical work pertaining to ion mobility within the ‘free molecular’ regime, describing in detail the rationale for approximations up to the two-temperature theory, using both a momentum transfer approach as well as the solution to the moments of the Boltzmann equation for the ion. With knowledge of the existing deficiencies in the numerical methods, the manuscript provides a series of necessary additions in order to better simulate some of the separations observed experimentally due to second-order effects, namely, high field effects, dipole alignment, angular velocities and moments of inertia, potential interactions and inelastic collisions among others.