- Browse by Author
Browsing by Author "Prasad, Mayuri"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Correction: Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer(Springer Nature, 2024-06-22) Atwani, Rula; Nagare, Rohit Pravin; Rogers, Amber; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Tong, Yan; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of MedicineCorrection: J Exp Clin Cancer Res 43, 156 (2024) 10.1186/s13046-024-03083-y Following publication of the original article [1], the authors identified an error in the author name of Rohit Pravin Nagare. The incorrect author name is: Rohit Nagare The correct author name is: Rohit Pravin Nagare The author group has been updated above and the original article [1] has been corrected.Item Dual TGFβ/BMP Pathway Inhibition Enables Expansion and Characterization of Multiple Epithelial Cell Types of the Normal and Cancerous Breast(American Association for Cancer Research, 2019-07-01) Prasad, Mayuri; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Anjanappa, Manjushree; Sandusky, George; Miller, Kathy D.; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineFunctional modeling of normal breast epithelial hierarchy and stromal-epithelial cell interactions have been difficult due to inability to obtain sufficient stem-progenitor-mature epithelial and stromal cells. Recently reported epithelial reprogramming assay has partially overcome this limitation, but cross contamination of cells from the feeder layer is a concern. The purpose of this study was to develop a feeder-layer independent inexpensive method to propagate multiple cell types from limited tissue resources. Cells obtained after enzymatic digestion of tissues collected at surgery or by core-needle biopsies were plated on tissue culture dishes pre-coated with laminin-5-rich conditioned media from the rat bladder tumor cell line 804G and a defined growth media with inhibitors of ROCK, TGFβ, and BMP signaling. Cells were characterized by flow cytometry, mammosphere assay, 3D cultures, and xenograft studies. Cells from the healthy breasts included CD10+/EpCAM- basal/myoepithelial, CD49f+/EpCAM+ luminal progenitor, CD49f-/EpCAM+ mature luminal, CD73+/EpCAM+/CD90- rare endogenous pluripotent somatic stem, CD73+/CD90+/EpCAM-, Estrogen Receptor alpha (ERα)-expressing ALCAM (CD166)+/EpCAM+, and ALDFLUOR+ stem/luminal progenitor subpopulations. Epithelial cells were luminal (KRT19+), basal (KRT14+) or dual positive luminal/basal hybrid cells. While breast cells derived from BRCA1, BRCA2, and PALB2 mutation carriers did not display unique characteristics, cells from women with breast cancer protective alleles showed enhanced differentiation. Cells could also be propagated from primary tumors and metastasis of breast, ovarian, and pancreatic cancer-neuroendocrine subtype. Xenograft studies confirmed tumorigenic properties of tumor-derived cells.Item Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer(Research Square, 2024-03-13) Atwani, Rula; Rogers, Amber; Nagare, Rohit; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of MedicineBackground: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results: In response to increased fibronectin (FN) secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and showed a strong correlation with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may represent a new therapeutic strategy to eradicate OCSCs and improve patient outcomes.Item Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer(Springer Nature, 2024-06-01) Atwani, Rula; Nagare, Rohit Pravin; Rogers, Amber; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Tong, Yan; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of MedicineBackground: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results: In response to increased fibronectin secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.Item Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade(American Association for Cancer Research, 2018-09) Kumar, Brijesh; Prasad, Mayuri; Bhat-Nakshatri, Poornima; Anjanappa, Manjushree; Kalra, Maitri; Marino, Natascia; Storniolo, Anna Maria; Rao, Xi; Liu, Sheng; Wan, Jun; Liu, Yunlong; Nakshatri, Harikrishna; Surgery, School of MedicineCell-type origin is one of the factors that determine molecular features of tumors, but resources to validate this concept are scarce because of technical difficulties in propagating major cell types of adult organs. Previous attempts to generate such resources to study breast cancer have yielded predominantly basal-type cell lines. We have created a panel of immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that form ductal structures similar to normal breast in 3D cultures and expressed markers of major cell types, including the luminal-differentiated cell-enriched ERα-FOXA1-GATA3 transcription factor network. We have also created cell lines from PROCR (CD201)+/EpCAM- cells that are likely the "normal" counterpart of the claudin-low subtype of breast cancers. RNA-seq and PAM50-intrinsic subtype clustering identified these cell lines as the "normal" counterparts of luminal A, basal, and normal-like subtypes and validated via immunostaining with basal-enriched KRT14 and luminal-enriched KRT19. We further characterized these cell lines by flow cytometry for distribution patterns of stem/basal, luminal-progenitor, mature/differentiated, multipotent PROCR+ cells, and organogenesis-enriched epithelial/mesenchymal hybrid cells using CD44/CD24, CD49f/EpCAM, CD271/EpCAM, CD201/EpCAM, and ALDEFLUOR assays and E-cadherin/vimentin double staining. These cell lines showed interindividual heterogeneity in stemness/differentiation capabilities and baseline activity of signaling molecules such as NF-κB, AKT2, pERK, and BRD4. These resources can be used to test the emerging concept that genetic variations in regulatory regions contribute to widespread differences in gene expression in "normal" conditions among the general population and can delineate the impact of cell-type origin on tumor progression.Significance: In addition to providing a valuable resource for the breast cancer research community to investigate cell-type origin of different subtypes of breast cancer, this study highlights interindividual differences in normal breast, emphasizing the need to use "normal" cells from multiple sources as controls to decipher the effects of cancer-specific genomic aberrations.Item Tissue transglutaminase activates integrin-linked kinase and β-catenin in ovarian cancer(American Society for Biochemistry and Molecular Biology, 2022) Condello, Salvatore; Prasad, Mayuri; Atwani, Rula; Matei, Daniela; Obstetrics and Gynecology, School of MedicineOvarian cancer (OC) is the most lethal gynecological cancer. OC cells have high proliferative capacity, are invasive, resist apoptosis, and tumors often display rearrangement of extracellular matrix (ECM) components, contributing to accelerated tumor progression. The multifunctional protein tissue transglutaminase (TG2) is known to be secreted in the tumor microenvironment, where it interacts with fibronectin (FN) and the cell surface receptor integrin β1. However, the mechanistic role of TG2 in cancer cell proliferation is unknown. Here, we demonstrate that TG2 directly interacts with and facilitates the phosphorylation and activation of the integrin effector protein integrin-linked kinase (ILK) at Ser246. We show that TG2 and p-Ser246-ILK form a complex that is detectable in patient-derived OC primary cells grown on FN-coated slides. In addition, we show that coexpression of TGM2 and ILK correlates with poor clinical outcome. Mechanistically, we demonstrate that TG2-mediated ILK activation causes phosphorylation of glycogen synthase kinase-3α/β, allowing β-catenin nuclear translocation and transcriptional activity. Furthermore, inhibition of TG2 and ILK using small molecules, neutralizing antibodies, or shRNA-mediated knockdown blocks cell adhesion to the FN matrix, as well as the Wnt receptor response to the Wnt-3A ligand, and ultimately, cell adhesion, growth, and migration. In conclusion, we demonstrate that TG2 directly interacts with and activates ILK in OC cells and tumors and define a new mechanism that links ECM cues with β-catenin signaling in OC. These results suggest a central role of TG2–FN–integrin clusters in ECM rearrangement and indicate that downstream effector ILK may represent a potential new therapeutic target in OC.Item Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity(American Association for the Advancement of Science, 2022) Kumar, Brijesh; Adebayo, Adedeji K.; Prasad, Mayuri; Capitano, Maegan L.; Wang, Ruizhong; Bhat-Nakshatri, Poornima; Anjanappa, Manjushre; Simpson, Edward; Chen, Duojiao; Liu, Yunlong; Schilder, Jeanne M.; Colter, Austyn B.; Maguire, Callista; Temm, Constance J.; Sandusky, George; Doud, Emma H.; Wijeratne, Aruna B.; Mosley, Amber L.; Broxmeyer, Hal E.; Nakshatri, Harikrishna; Microbiology and Immunology, School of MedicinePreclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.