ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Prabu, Avinash"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Crash Prediction and Collision Avoidance using Hidden Markov Model
    (2019-08) Prabu, Avinash; Li, Lingxi; King, Brian; Chen, Yaobin
    Automotive technology has grown from strength to strength in the recent years. The main focus of research in the near past and the immediate future are autonomous vehicles. Autonomous vehicles range from level 1 to level 5, depending on the percentage of machine intervention while driving. To make a smooth transition from human driving and machine intervention, the prediction of human driving behavior is critical. This thesis is a subset of driving behavior prediction. The objective of this thesis is to predict the possibility of crash and implement an appropriate active safety system to prevent the same. The prediction of crash requires data of transition between lanes, and speed ranges. This is achieved through a variation of hidden Markov model. With the crash prediction and analysis of the Markov models, the required ADAS system is activated. The above concept is divided into sections and an algorithm was developed. The algorithm is then scripted into MATLAB for simulation. The results of the simulation is recorded and analyzed to prove the idea.
  • Loading...
    Thumbnail Image
    Item
    Integrating Data-driven Control Methods with Motion Planning: A Deep Reinforcement Learning-based Approach
    (2023-12) Prabu, Avinash; Li, Lingxi; Chen, Yaobin; King, Brian; Tian, Renran
    Path-tracking control is an integral part of motion planning in autonomous vehicles, in which the vehicle's lateral and longitudinal positions are controlled by a control system that will provide acceleration and steering angle commands to ensure accurate tracking of longitudinal and lateral movements in reference to a pre-defined trajectory. Extensive research has been conducted to address the growing need for efficient algorithms in this area. In this dissertation, a scenario and machine learning-based data-driven control approach is proposed for a path-tracking controller. Firstly, a Deep Reinforcement Learning model is developed to facilitate the control of longitudinal speed. A Deep Deterministic Policy Gradient algorithm is employed as the primary algorithm in training the reinforcement learning model. The main objective of this model is to maintain a safe distance from a lead vehicle (if present) or track a velocity set by the driver. Secondly, a lateral steering controller is developed using Neural Networks to control the steering angle of the vehicle with the main goal of following a reference trajectory. Then, a path-planning algorithm is developed using a hybrid A* planner. Finally, the longitudinal and lateral control models are coupled together to obtain a complete path-tracking controller that follows a path generated by the hybrid A* algorithm at a wide range of vehicle speeds. The state-of-the-art path-tracking controller is also built using Model Predictive Control and Stanley control to evaluate the performance of the proposed model. The results showed the effectiveness of both proposed models in the same scenario, in terms of velocity error, lateral yaw angle error, and lateral distance error. The results from the simulation show that the developed hybrid A* algorithm has good performance in comparison to the state-of-the-art path planning algorithms.
  • Loading...
    Thumbnail Image
    Item
    Peek into the Future Camera-based Occupant Sensing in Configurable Cabins for Autonomous Vehicles
    (IEEE Xplore, 2021-09-19) Prabu, Avinash; Tian, Renran; Li, Lingxi; Le, Jialiang; Sundararajan, Srinivasan; Barbat, Saeed; Electrical and Computer Engineering, School of Engineering and Technology
    The development of fully autonomous vehicles (AVs) can potentially eliminate drivers and introduce unprecedented seating design. However, highly flexible seat configurations may lead to occupants' unconventional poses and actions. Understanding occupant behaviors and prioritize safety features become eye-catching topics in the AV research frontier. Visual sensors have the advantages of cost-efficiency and high-fidelity imaging and become more widely applied for in-car sensing purposes. Occlusion is one big concern for this type of system in crowded car cabins. It is important but largely unknown about how a visual-sensing framework will look like to support 2-D and 3-D human pose tracking towards highly configurable seats. As one of the first studies to touch this topic, we peek into the future camera-based sensing framework via a simulation experiment. Constructed representative car-cabin, seat layouts, and occupant sizes, camera coverage from different angles and positions is simulated and calculated. The comprehensive coverage data are synthesized through an optimization process to determine the camera layout and overall occupant coverage. The results show the needs and design of a different number of cameras to fully or partially cover all the occupants with changeable configurations of up to six seats.
  • Loading...
    Thumbnail Image
    Item
    SceNDD: A Scenario-based Naturalistic Driving Dataset
    (IEEE, 2022-10) Prabu, Avinash; Ranjan, Nitya; Li, Lingxi; Tian, Renran; Chien, Stanley; Chen, Yaobin; Sherony, Rini; Electrical and Computer Engineering, School of Engineering and Technology
    In this paper, we propose SceNDD: a scenario-based naturalistic driving dataset that is built upon data collected from an instrumented vehicle in downtown Indianapolis. The data collection was completed in 68 driving sessions with different drivers, where each session lasted about 20–40 minutes. The main goal of creating this dataset is to provide the research community with real driving scenarios that have diverse trajectories and driving behaviors. The dataset contains ego-vehicle's waypoints, velocity, yaw angle, as well as non-ego actor's waypoints, velocity, yaw angle, entry-time, and exit-time. Certain flexibility is provided to users so that actors, sensors, lanes, roads, and obstacles can be added to the existing scenarios. We used a Joint Probabilistic Data Association (JPDA) tracker to detect non-ego vehicles on the road. We present some preliminary results of the proposed dataset and a few applications associated with it. The complete dataset is expected to be released by the end of 2022.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University