- Browse by Author
Browsing by Author "Poor, H. Vincent"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Authenticating Users Through Fine-Grained Channel Information(IEEE, 2018-02) Liu, Hongbo; Wang, Yan; Liu, Jian; Yang, Jie; Chen, Yingying; Poor, H. Vincent; Engineering Technology, School of Engineering and TechnologyUser authentication is the critical first step in detecting identity-based attacks and preventing subsequent malicious attacks. However, the increasingly dynamic mobile environments make it harder to always apply cryptographic-based methods for user authentication due to their infrastructural and key management overhead. Exploiting non-cryptographic based techniques grounded on physical layer properties to perform user authentication appears promising. In this work, the use of channel state information (CSI), which is available from off-the-shelf WiFi devices, to perform fine-grained user authentication is explored. Particularly, a user-authentication framework that can work with both stationary and mobile users is proposed. When the user is stationary, the proposed framework builds a user profile for user authentication that is resilient to the presence of a spoofer. The proposed machine learning based user-authentication techniques can distinguish between two users even when they possess similar signal fingerprints and detect the existence of a spoofer. When the user is mobile, it is proposed to detect the presence of a spoofer by examining the temporal correlation of CSI measurements. Both office building and apartment environments show that the proposed framework can filter out signal outliers and achieve higher authentication accuracy compared with existing approaches using received signal strength (RSS).Item Enabling Self-healing Smart Grid Through Jamming Resilient Local Controller Switching(IEEE, 2015-09) Liu, Hongbo; Chen, Yingying; Chuah, Mooi Choo; Yang, Jie; Poor, H. Vincent; Department of Computer and Information Science, School of ScienceA key component of a smart grid is its ability to collect useful information from a power grid for enabling control centers to estimate the current states of the power grid. Such information can be delivered to the control centers via wireless or wired networks. It is envisioned that wireless technology will be widely used for local-area communication subsystems in the smart grid (e.g., in distribution networks). However, various attacks with serious impact can be launched in wireless networks such as channel jamming attacks and denial-of-service attacks. In particular, jamming attacks can cause significant damages to power grids, e.g., delayed delivery of time-critical messages can prevent control centers from properly controlling the outputs of generators to match load demands. In this paper, a communication subsystem with enhanced self-healing capability in the presence of jamming is designed via intelligent local controller switching while integrating a retransmission mechanism. The proposed framework allows sufficient readings from smart meters to be continuously collected by various local controllers to estimate the states of a power grid under various attack scenarios. The jamming probability is also analyzed considering the impact of jammer power and shadowing effects. In addition, guidelines on optimal placement of local controllers to ensure effective switching of smart meters under jamming are provided. Via theoretical, experimental and simulation studies, it is demonstrated that our proposed system is effective in maintaining communications between smart meters and local controllers even when multiple jammers are present in the network.