- Browse by Author
Browsing by Author "Ponna, Saisantosh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibition of Insulin-like Growth Factor 1 Receptor/Insulin Receptor Signaling by Small-Molecule Inhibitor BMS-754807 Leads to Improved Survival in Experimental Esophageal Adenocarcinoma(MDPI, 2024-09-17) Hassan, Md Sazzad; Johnson, Chloe; Ponna, Saisantosh; Scofield, Dimitri; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineThe insulin-like growth factor-1 (IGF-1) and insulin axes are upregulated in obesity and obesity-associated esophageal adenocarcinoma (EAC). Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a contemporary nanotechnology-based paclitaxel (PT) bound to human albumin, ensuring its solubility in water rather than a toxic solvent. Here, we examined the benefits of inhibiting insulin-like growth factor-1 receptor/insulin receptor (IGF-1/IR) signaling and the enhancement of nab-paclitaxel effects by inclusion of the small-molecule inhibitor BMS-754807 using both in vitro and in vivo models of EAC. Using multiple EAC cell lines, BMS-754807 and nab-paclitaxel were evaluated as mono and combination therapies for in vitro effects on cell proliferation, cell death, and cell movement. We then analyzed the in vivo anticancer potency with survival improvement with BMS-754807 and nab-paclitaxel mono and combination therapies. BMS-754807 monotherapy suppressed in vitro cell proliferation and wound healing while increasing apoptosis. BMS-754807, when combined with nab-paclitaxel, enhanced those effects on the inhibition of cell proliferation, increment in cell apoptosis, and inhibition of wound healing. BMS-754807 with nab-paclitaxel produced substantially greater antitumor effects by increasing in vivo apoptosis, leading to increased mice survival compared to those of BMS-754807 or nab-paclitaxel monotherapy. Our outcomes support the use of BMS-754807, alone and in combination with nab-paclitaxel, as an efficient and innovative treatment choice for EAC.Item Nab-Paclitaxel in the Treatment of Gastrointestinal Cancers—Improvements in Clinical Efficacy and Safety(MDPI, 2023-07-15) Hassan, Md Sazzad; Awasthi, Niranjan; Ponna, Saisantosh; von Holzen, Urs; Surgery, School of MedicineTaxanes (paclitaxel and docetaxel) are one of the most useful classes of anticancer drugs. Taxanes are highly hydrophobic; therefore, these drugs must be dissolved in organic solvents (polysorbate or Cremophor EL), which contribute to their toxicities. To reduce this toxicity and to enhance their efficacy, novel formulations have been developed. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is an albumin-stabilized, Cremophor-free, and water-soluble nanoparticle formulation of paclitaxel. Nab-paclitaxel has better solubility and less infusion-associated toxicity compared to solvent-based paclitaxel. Additionally, nab-paclitaxel can be given at higher doses and concentrations compared with solvent-based paclitaxel. Based on its superior clinical efficacy and safety profile, nab-paclitaxel received FDA approval for metastatic breast cancer (2008) and NSCLC (2011). Among gastrointestinal cancers, it is now approved in the USA for treating patients with metastatic adenocarcinoma of the pancreas as first-line therapy in combination with gemcitabine. Furthermore, several clinical trials have suggested the potential efficacy of nab-paclitaxel as a single agent or in combination with other agents for the treatment of metastatic esophageal, gastric, bowel, and biliary tract cancers. Nab-paclitaxel has been demonstrated to have greater overall response rates (ORR) with enhanced progression-free survival (PFS), overall survival (OS) and a superior safety profile with fewer adverse effects in patients with gastrointestinal tract cancers. This review summarizes the advantages associated with nab-paclitaxel-based regimens in terms of improving clinical efficacy and the safety profile in upper gastrointestinal cancer.