- Browse by Author
Browsing by Author "Polidoro, Rafael B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine(American Society for Clinical Investigation, 2024-04-30) Senkpeil, Leetah; Bhardwaj, Jyoti; Little, Morgan R.; Holla, Prasida; Upadhye, Aditi; Fusco, Elizabeth M.; Swanson, Phillip A., II; Wiegand, Ryan E.; Macklin, Michael D.; Bi, Kevin; Flynn, Barbara J.; Yamamoto, Ayako; Gaskin, Erik L.; Sather, D. Noah; Oblak, Adrian L.; Simpson, Edward; Gao, Hongyu; Haining, W. Nicholas; Yates, Kathleen B.; Liu, Xiaowen; Murshedkar, Tooba; Richie, Thomas L.; Sim, B. Kim Lee; Otieno, Kephas; Kariuki, Simon; Xuei, Xiaoling; Liu, Yunlong; Polidoro, Rafael B.; Hoffman, Stephen L.; Oneko, Martina; Steinhardt, Laura C.; Schmidt, Nathan W.; Seder, Robert A.; Tran, Tuan M.; Medicine, School of MedicineA systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.Item Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19(Frontiers Media, 2020-06-26) Polidoro, Rafael B.; Hagan, Robert S.; de Santis Santiago, Roberta; Schmidt, Nathan W.; Pediatrics, School of MedicineMost SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF and IL-1β increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine release syndrome (CRS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.