- Browse by Author
Browsing by Author "Polidoro, Rafael"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Gut Microbiota Composition Modulates the Magnitude and Quality of Germinal Centers during Plasmodium Infections(Cell Press, 2020-12-15) Waide, Morgan L.; Polidoro, Rafael; Powell, Whitney L.; Denny, Joshua E.; Kos, Justin; Tieri, David A.; Watson, Corey T.; Schmidt, Nathan W.; Pediatrics, School of MedicineGut microbiota composition is associated with human and rodent Plasmodium infections, yet the mechanism by which gut microbiota affects the severity of malaria remains unknown. Humoral immunity is critical in mediating the clearance of Plasmodium blood stage infections, prompting the hypothesis that mice with gut microbiota-dependent decreases in parasite burden exhibit better germinal center (GC) responses. In support of this hypothesis, mice with a low parasite burden exhibit increases in GC B cell numbers and parasite-specific antibody titers, as well as better maintenance of GC structures and a more targeted, qualitatively different antibody response. This enhanced humoral immunity affects memory, as mice with a low parasite burden exhibit robust protection against challenge with a heterologous, lethal Plasmodium species. These results demonstrate that gut microbiota composition influences the biology of spleen GCs as well as the titer and repertoire of parasite-specific antibodies, identifying potential approaches to develop optimal treatments for malaria.Item SARS-CoV-2 Selectively Induces the Expression of Unproductive Splicing Isoforms of Interferon, Class I MHC, and Splicing Machinery Genes(MDPI, 2024-05-23) Dias, Thomaz Lüscher; Mamede, Izabela; de Toledo, Nayara Evelin; Queiroz, Lúcio Rezende; Castro, Ícaro; Polidoro, Rafael; Del-Bem, Luiz Eduardo; Nakaya, Helder; Franco, Glória Regina; Pediatrics, School of MedicineRNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host’s RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.Item γδ T cells suppress Plasmodium falciparum blood stage infection by direct killing and phagocytosis(Springer Nature, 2021) Junqueira, Caroline; Polidoro, Rafael; Castro, Guilherme; Absalon, Sabrina; Liang, Zhitao; Santara, Sumit Sen; Crespo, Ângela; Pereira, Dhelio B.; Gazzinelli, Ricardo T.; Dvorin, Jeffrey D.; Lieberman, Judy; Pharmacology and Toxicology, School of MedicineActivated Vγδ9Vδ2 (γδ2) T lymphocytes that sense parasite-produced phosphoantigens are expanded in Plasmodium falciparum-infected patients. Although previous studies suggested that γδ2 T cells help control erythrocytic malaria, whether γδ2 T cells recognize infected red blood cells (iRBCs) was uncertain. Here we show that iRBCs stained for the phosphoantigen sensor, butyrophilin 3A1 (BTN3A1). γδ2 T cells formed immune synapses and lysed iRBCs in a contact, phosphoantigen, BTN3A1 and degranulation-dependent manner, killing intracellular parasites. Granulysin released into the synapse lysed iRBCs and delivered death-inducing granzymes to the parasite. All intra-erythrocytic parasites were susceptible, but schizonts were most sensitive. A second protective γδ2 T cell mechanism was identified. In the presence of patient serum, γδ2 T cells phagocytosed and degraded opsonized iRBCs in a CD16-dependent manner, decreasing parasite multiplication. Thus, γδ2 T cells have two ways to control blood stage malaria – γδT cell antigen receptor (TCR)-mediated degranulation and phagocytosis of antibody-coated iRBCs.