- Browse by Author
Browsing by Author "Poi, Ming"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK(PLOS, 2021-07-15) Chang, Long-Sheng; Oblinger, Janet L.; Smith, Abbi E.; Ferrer, Marc; Angus, Steven P.; Hawley, Eric; Petrilli, Alejandra M.; Beauchamp, Roberta L.; Riecken, Lars Björn; Erdin, Serkan; Poi, Ming; Huang, Jie; Bessler, Waylan K.; Zhang, Xiaohu; Guha, Rajarshi; Thomas, Craig; Burns, Sarah S.; Gilbert, Thomas S.K.; Jiang, Li; Li, Xiaohong; Lu, Qingbo; Yuan, Jin; He, Yongzheng; Dixon, Shelley A.H.; Masters, Andrea; Jones, David R.; Yates, Charles W.; Haggarty, Stephen J.; La Rosa, Salvatore; Welling, D. Bradley; Stemmer-Rachamimov, Anat O.; Plotkin, Scott R.; Gusella, James F.; Guinney, Justin; Morrison, Helen; Ramesh, Vijaya; Fernandez-Valle, Cristina; Johnson, Gary L.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of MedicineNeurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.Item A phase I trial of Flavopiridol in relapsed multiple myeloma(Springer, 2014-02) Hofmeister, Craig C.; Poi, Ming; Bowers, Mindy A.; Zhao, Weiqiang; Phelps, Mitch A.; Benson, Don M.; Kraut, Eric H.; Farag, Sherif; Efebera, Yvonne A.; Sexton, Jennifer; Lin, Thomas S.; Grever, Michael; Byrd, John C.; Department of Medicine, IU School of MedicinePURPOSE: Flavopiridol is primarily a cyclin-dependent kinase-9 inhibitor, and we performed a dose escalation trial to determine the maximum tolerated dose and safety and generate a pharmacokinetic (PK) profile. METHODS: Patients with a diagnosis of relapsed myeloma after at least two prior treatments were included. Flavopiridol was administered as a bolus and then continuous infusion weekly for 4 weeks in a 6-week cycle. RESULTS: Fifteen patients were treated at three dose levels (30 mg/m(2) bolus, 30 mg/m(2) CIV to 50 mg/m(2) bolus, and 50 mg/m(2) CIV). Cytopenias were significant, and elevated transaminases (grade 4 in 3 patients, grade 3 in 4 patients, and grade 2 in 3 patients) were noted but were transient. Diarrhea (grade 3 in 6 patients and grade 2 in 5 patients) did not lead to hospital admission. There were no confirmed partial responses although one patient with t(4;14) had a decrease in his monoclonal protein >50 % that did not persist. PK properties were similar to prior publications, and immunohistochemical staining for cyclin D1 and phospho-retinoblastoma did not predict response. CONCLUSIONS: Flavopiridol as a single agent given by bolus and then infusion caused significant diarrhea, cytopenias, and transaminase elevation but only achieved marginal responses in relapsed myeloma