ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Plotnik, Joshua P."

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase
    (Elsevier, 2018-02-01) Tomar, Sunil; Plotnik, Joshua P.; Haley, James; Scantland, Joshua; Dasari, Subramanyam; Sheikh, Zahir; Emerson, Robert; Lenz, Dean; Hollenhorst, Peter C.; Mitra, Anirban K.; Pathology and Laboratory Medicine, School of Medicine
    Metastatic colonization involves paracrine/juxtacrine interactions with the microenvironment inducing an adaptive response through transcriptional regulation. However, the identities of transcription factors (TFs) induced by the metastatic microenvironment in ovarian cancer (OC) and their mechanism of action is poorly understood. Using an organotypic 3D culture model recapitulating the early events of metastasis, we identified ETS1 as the most upregulated member of the ETS family of TFs in metastasizing OC cells as they interacted with the microenvironment. ETS1 was regulated by p44/42 MAP kinase signaling activated in the OC cells interacting with mesothelial cells at the metastatic site. Human OC tumors had increased expression of ETS1, which predicted poor prognosis. ETS1 regulated OC metastasis both in vitro and in mouse xenografts. A combination of ChIP-seq and RNA-seq analysis and functional rescue experiments revealed FAK as the key transcriptional target and downstream effector of ETS1. Taken together, our results indicate that ETS1 is an essential transcription factor induced in OC cells by the microenvironment, which promotes metastatic colonization though the transcriptional upregulation of its target FAK.
  • Loading...
    Thumbnail Image
    Item
    ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells
    (Oxford, 2014-10-29) Plotnik, Joshua P.; Budka, Justin A.; Ferris, Mary W.; Hollenhorst, Peter C.; Medicine, School of Medicine
    The RAS/ERK pathway is commonly activated in carcinomas and promotes oncogenesis by altering transcriptional programs. However, the array of cis-regulatory elements and trans-acting factors that mediate these transcriptional changes is still unclear. Our genome-wide analysis determined that a sequence consisting of neighboring ETS and AP-1 transcription factor binding sites is enriched near cell migration genes activated by RAS/ERK signaling in epithelial cells. In vivo screening of candidate ETS proteins revealed that ETS1 is specifically required for migration of RAS/ERK activated cells. Furthermore, both migration and transcriptional activation through ETS/AP-1 required ERK phosphorylation of ETS1. Genome-wide mapping of multiple ETS proteins demonstrated that ETS1 binds specifically to enhancer ETS/AP-1 sequences. ETS1 occupancy, and its role in cell migration, was conserved in epithelial cells derived from multiple tissues, consistent with a chromatin organization common to epithelial cell lines. Genome-wide expression analysis showed that ETS1 was required for activation of RAS-regulated cell migration genes, but also identified a surprising role for ETS1 in the repression of genes such as DUSP4, DUSP6 and SPRY4 that provide negative feedback to the RAS/ERK pathway. Consistently, ETS1 was required for robust RAS/ERK pathway activation. Therefore, ETS1 has dual roles in mediating epithelial-specific RAS/ERK transcriptional functions.
  • Loading...
    Thumbnail Image
    Item
    Extracellular Signal-Regulated Kinase Signaling Regulates the Opposing Roles of JUN Family Transcription Factors at ETS/AP-1 Sites and in Cell Migration
    (American Society for Microbiology, 2015-01) Selvaraj, Nagarathinam; Budka, Justin A.; Ferris, Mary W.; Plotnik, Joshua P.; Hollenhorst, Peter C.; Health Sciences, School of Health and Rehabilitation Sciences
    JUN transcription factors bind DNA as part of the AP-1 complex, regulate many cellular processes, and play a key role in oncogenesis. The three JUN proteins (c-JUN, JUNB, and JUND) can have both redundant and unique functions depending on the biological phenotype and cell type assayed. Mechanisms that allow this dynamic switching between overlapping and distinct functions are unclear. Here we demonstrate that JUND has a role in prostate cell migration that is the opposite of c-JUN's and JUNB's. RNA sequencing reveals that opposing regulation by c-JUN and JUND defines a subset of AP-1 target genes with cell migration roles. cis-regulatory elements for only this subset of targets were enriched for ETS factor binding, indicating a specificity mechanism. Interestingly, the function of c-JUN and JUND in prostate cell migration switched when we compared cells with an inactive versus an active RAS/extracellular signal-regulated kinase (ERK) signaling pathway. We show that this switch is due to phosphorylation and activation of JUND by ERK. Thus, the ETS/AP-1 sequence defines a unique gene expression program regulated by the relative levels of JUN proteins and RAS/ERK signaling. This work provides a rationale for how transcription factors can have distinct roles depending on the signaling status and the biological function in question.
  • Loading...
    Thumbnail Image
    Item
    An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer
    (Elsevier, 2016-10-25) Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R.; Budka, Justin A.; Plotnik, Joshua P.; Jerde, Travis J.; Hollenhorst, Peter C.; Department of Pharmacology and Toxicology, IU School of Medicine
    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma.
  • Loading...
    Thumbnail Image
    Item
    Interaction with ZMYND11 mediates opposing roles of Ras-responsive transcription factors ETS1 and ETS2
    (Oxford University Press, 2017-05-05) Plotnik, Joshua P.; Hollenhorst, Peter C.; Biology, School of Science
    Aberrant activation of RAS/MAPK signaling is a driver of over one third of all human carcinomas. The homologous transcription factors ETS1 and ETS2 mediate activation of gene expression programs downstream of RAS/MAPK signaling. ETS1 is important for oncogenesis in many tumor types. However, ETS2 can act as an oncogene in some cellular backgrounds, and as a tumor suppressor in others, and the molecular mechanism responsible for this cell-type specific function remains unknown. Here, we show that ETS1 and ETS2 can regulate a cell migration gene expression program in opposite directions, and provide the first comparison of the ETS1 and ETS2 cistromes. This genomic data and an ETS1 deletion line reveal that the opposite function of ETS2 is a result of binding site competition and transcriptional attenuation due to weaker transcriptional activation by ETS2 compared to ETS1. This weaker activation was mapped to the ETS2 N-terminus and a specific interaction with the co-repressor ZMYND11 (BS69). Furthermore, ZMYND11 expression levels in patient tumors correlated with oncogenic versus tumor suppressive roles of ETS2. Therefore, these data indicate a novel and specific mechanism allowing ETS2 to switch between oncogenic and tumor suppressive functions in a cell-type specific manner.
  • Loading...
    Thumbnail Image
    Item
    Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target
    (Oxford University Press, 2021-01-27) Greulich, Benjamin M.; Plotnik, Joshua P.; Jerde, Travis J.; Hollenhorst, Peter C.; Pharmacology and Toxicology, School of Medicine
    The TMPRSS2-ERG gene fusion and subsequent overexpression of the ERG transcription factor occurs in ∼50% of prostate tumors, making it the most common abnormality of the prostate cancer genome. While ERG has been shown to drive tumor progression and cancer-related phenotypes, as a transcription factor it is difficult to target therapeutically. Using a genetic screen, we identified the toll-like receptor 4 (TLR4) signaling pathway as important for ERG function in prostate cells. Our data confirm previous reports that ERG can transcriptionally activate TLR4 gene expression; however, using a constitutively active ERG mutant, we demonstrate that the critical function of TLR4 signaling is upstream, promoting ERG phosphorylation at serine 96 and ERG transcriptional activation. The TLR4 inhibitor, TAK-242, attenuated ERG-mediated migration, clonogenic survival, target gene activation and tumor growth. Together these data indicate a mechanistic basis for inhibition of TLR4 signaling as a treatment for ERG-positive prostate cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University