- Browse by Author
Browsing by Author "Planas, Ferran"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis(Beilstein, 2019-01-16) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceThiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions. Many are involved in stereospecific carbon–carbon bond formation and, consequently, have found increasing interest and utility as chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the activated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of the individual reactions. In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and (R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation, provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent enzymes, and, potentially, for the use of unnatural substrates in such reactions.Item Computational Study of Enantioselective Carboligation Catalyzed by Benzoylformate Decarboxylase(ACS, 2019-05) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceBenzoylformate decarboxylase (BFDC) is a thiamin-diphosphate enzyme that catalyzes the decarboxylation of benzoylformate to yield benzaldehyde and carbon dioxide. In addition to its natural reaction, BFDC is able to catalyze carboligation reactions in a highly enantioselective fashion, making the enzyme a potentially important biocatalyst. Here we use density functional theory calculations to investigate the detailed mechanism of BFDC-catalyzed carboligation and to elucidate the sources of the enantioselectivity. Benzaldehyde and acetaldehyde are studied as acceptors, for, when reacting with a benzaldehyde donor, they yield products with opposite enantiospecificity. For each of the acceptors, several possible binding modes to the active site are initially examined before the individual reaction paths leading to the two enantiomeric products are followed. The calculated energies are in good agreement with the experimental results, and the analysis of the transition states gives insight into the origins of the enantioselectivity.Item Enzymatic Stetter Reaction: Computational Study of the Reaction Mechanism of MenD(American Chemical Society, 2021) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceQuantum chemical calculations are used to investigate the detailed reaction mechanism of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid (SEPHCHC) synthase (also known as MenD), a thiamin diphosphate-dependent decarboxylase that catalyzes the formation of SEPHCHC from 2-ketoglutarate and isochorismate. This enzyme is involved in the menaquinone biosynthesis pathway in M. tuberculosis and is thought of as a potential drug target for anti-tuberculosis therapeutics. In addition, MenD shows promise as a biocatalyst for the synthesis of 1,4-functionalized compounds. Models of the active site are constructed on the basis of available X-ray structures, and the intermediates and transition states involved in the reaction mechanism are optimized and characterized. The calculated mechanism is in good agreement with prior kinetic studies and gives new insights into the mode of action of the enzyme. In particular, the structure and role of the tetrahedral post-decarboxylation intermediate observed in X-ray structures are discussed.Item A Theoretical Study of the Benzoylformate Decarboxylase Reaction Mechanism(Frontiers Media, 2018-06-26) Planas, Ferran; Sheng, Xiang; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceDensity functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.