- Browse by Author
Browsing by Author "Phipatanakul, Wanda"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Determinants of Lung Function Across Childhood in the Severe Asthma Research Program (SARP) 3(Elsevier, 2023) Gaffin, Jonathan M.; Petty, Carter R.; Sorkness, Ronald L.; Denlinger, Loren C.; Phillips, Brenda R.; Ly, Ngoc P.; Gaston, Benjamin; Ross, Kristie; Fitzpatrick, Anne; Bacharier, Leonard B.; DeBoer, Mark D.; Teague, W. Gerald; Wenzel, Sally E.; Ramratnam, Sima; Israel, Elliot; Mauger, David T.; Phipatanakul, Wanda; National Heart, Lung and Blood Institute’s Severe Asthma Research Program-3 Investigators; Pediatrics, School of MedicineBackground: Children with asthma are at risk for low lung function extending into adulthood, but understanding of clinical predictors is incomplete. Objective: We sought to determine phenotypic factors associated with FEV1 throughout childhood in the Severe Asthma Research Program 3 pediatric cohort. Methods: Lung function was measured at baseline and annually. Multivariate linear mixed-effects models were constructed to assess the effect of baseline and time-varying predictors of prebronchodilator FEV1 at each assessment for up to 6 years. All models were adjusted for age, predicted FEV1 by Global Lung Function Initiative reference equations, race, sex, and height. Secondary outcomes included postbronchodilator FEV1 and prebronchodilator FEV1/forced vital capacity. Results: A total of 862 spirometry assessments were performed for 188 participants. Factors associated with FEV1 include baseline Feno (B, -49 mL/log2 PPB; 95% CI, -92 to -6), response to a characterizing dose of triamcinolone acetonide (B, -8.4 mL/1% change FEV1 posttriamcinolone; 95% CI, -12.3 to -4.5), and maximal bronchodilator reversibility (B, -27 mL/1% change postbronchodilator FEV1; 95% CI, -37 to -16). Annually assessed time-varying factors of age, obesity, and exacerbation frequency predicted FEV1 over time. Notably, there was a significant age and sex interaction. Among girls, there was no exacerbation effect. For boys, however, moderate (1-2) exacerbation frequency in the previous 12 months was associated with -20 mL (95% CI, -39 to -2) FEV1 at each successive year. High exacerbation frequency (≥3) 12 to 24 months before assessment was associated with -34 mL (95% CI, -61 to -7) FEV1 at each successive year. Conclusions: In children with severe and nonsevere asthma, several clinically relevant factors predict FEV1 over time. Boys with recurrent exacerbations are at high risk of lower FEV1 through childhood.Item Geography, generalisability, and susceptibility in clinical trials(Elsevier, 2021) Clougherty, Jane E.; Kinnee, Ellen J.; Cardet, Juan Carlos; Mauger, David; Bacharier, Leonard; Beigelman, Avraham; Blake, Kathryn V.; Cabana, Michael D.; Castro, Mario; Chmiel, James F.; Covar, Ronina; Fitzpatrick, Anne; Gaffin, Jonathan M.; Gentile, Deborah; Israel, Elliot; Jackson, Daniel J.; Kraft, Monica; Krishnan, Jerry A.; Kumar, Harsha Vardhan; Lang, Jason E.; Lazarus, Stephen C.; Lemanske, Robert F.; Lima, John; Martinez, Fernando D.; Morgan, Wayne; Moy, James; Myers, Ross; Naureckas, Edward T.; Ortega, Victor E.; Peters, Stephen P.; Phipatanakul, Wanda; Pongracic, Jacqueline A; Ross, Kristie; Sheehan, William J.; Smith, Lewis J.; Solway, Julian; Sorkness, Christine A.; Wechsler, Michael E.; Wenzel, Sally; White, Steven R.; Holguin, Fernando; Pediatrics, School of MedicineItem PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment(Elsevier, 2021) Israel, Elliot; Denlinger, Loren C.; Bacharier, Leonard B.; LaVange, Lisa M.; Moore, Wendy C.; Peters, Michael C.; Georas, Steve N.; Wright, Rosalind J.; Mauger, David T.; Noel, Patricia; Akuthota, Praveen; Bach, Julia; Bleecker, Eugene R.; Cardet, Juan Carlos; Carr, Tara F.; Castro, Mario; Cinelli, Angeles; Comhair, Suzy A.A.; Covar, Ronina A.; Alexander, Laura Crotty; DiMango, Emily A.; Erzurum, Serpil C.; Fahy, John V.; Fajt, Merritt L.; Gaston, Benjamin M.; Hoffman, Eric A.; Holguin, Fernando; Jackson, Daniel J.; Jain, Sonia; Jarjour, Nizar N.; Ji, Yuan; Kenyon, Nicholas J.; Kosorok, Michael R.; Kraft, Monica; Krishnan, Jerry A.; Kumar, Rajesh; Liu, Andrew H.; Liu, Mark C.; Ly, Ngoc P.; Marquis, M. Alison; Martinez, Fernando D.; Moy, James N.; O’Neal, Wanda K.; Ortega, Victor E.; Peden, David B.; Phipatanakul, Wanda; Ross, Kristie; Smith, Lewis J.; Szefler, Stanley J.; Teague, W. Gerald; Tulchinsky, Abigail F.; Vijayanand, Pandurangan; Wechsler, Michael E.; Wenzel, Sally E.; White, Steven R.; Zeki, Amir A.; Ivanova, Anastasia; Pediatrics, School of MedicineSevere asthma accounts for almost half the cost associated with asthma. Severe asthma is driven by heterogeneous molecular mechanisms. Conventional clinical trial design often lacks the power and efficiency to target subgroups with specific pathobiological mechanisms. Furthermore, the validation and approval of new asthma therapies is a lengthy process. A large proportion of that time is taken by clinical trials to validate asthma interventions. The National Institutes of Health Precision Medicine in Severe and/or Exacerbation Prone Asthma (PrecISE) program was established with the goal of designing and executing a trial that uses adaptive design techniques to rapidly evaluate novel interventions in biomarker-defined subgroups of severe asthma, while seeking to refine these biomarker subgroups, and to identify early markers of response to therapy. The novel trial design is an adaptive platform trial conducted under a single master protocol that incorporates precision medicine components. Furthermore, it includes innovative applications of futility analysis, cross-over design with use of shared placebo groups, and early futility analysis to permit more rapid identification of effective interventions. The development and rationale behind the study design are described. The interventions chosen for the initial investigation and the criteria used to identify these interventions are enumerated. The biomarker-based adaptive design and analytic scheme are detailed as well as special considerations involved in the final trial design.Item The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: an overview of Network organization, procedures and interventions(Elsevier, 2022-02) Georas, Steve N.; Wright, Rosalind J.; Ivanova, Anastasia; Israel, Elliot; LaVange, Lisa M.; Akuthota, Praveen; Carr, Tara F.; Denlinger, Loren C.; Fajt, Merritt L.; Kumar, Rajesh; O’Neal, Wanda K.; Phipatanakul, Wanda; Szefler, Stanley J.; Aronica, Mark A.; Bacharier, Leonard B.; Burbank, Allison J.; Castro, Mario; Alexander, Laura Crotty; Bamdad, Julie; Cardet, Juan Carlos; Comhair, Suzy A. A.; Covar, Ronina A.; DiMango, Emily A.; Erwin, Kim; Erzurum, Serpil C.; Fahy, John V.; Gaffin, Jonathan M.; Gaston, Benjamin; Gerald, Lynn B.; Hoffman, Eric A.; Holguin, Fernando; Jackson, Daniel J.; James, John; Jarjour, Nizar N.; Kenyon, Nicholas J.; Khatri, Sumita; Kirwan, John P.; Kraft, Monica; Krishnan, Jerry A.; Liu, Andrew H.; Liu, Mark C.; Marquis, M. Alison; Martinez, Fernando; Mey, Jacob; Moore, Wendy C.; Moy, James N.; Ortega, Victor E.; Peden, David B.; Pennington, Emily; Peters, Michael C.; Ross, Kristie; Sanchez, Maria; Smith, Lewis J.; Sorkness, Ronald L.; Wechsler, Michael E.; Wenzel, Sally E.; White, Steven R.; Zein, Joe; Zeki, Amir A.; Noel, Patricia; Pediatrics, School of MedicineAsthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here we describe the Precision Interventions for Severe and/or Exacerbation Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the U.S. The PrecISE Network was designed to conduct phase II/proof of concept clinical trials of precision interventions in the severe asthma population, and is supported by the National Heart Lung and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the Network will evaluate up to six interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for of severe asthma.Item Preventing asthma in high risk kids (PARK) with omalizumab: Design, rationale, methods, lessons learned and adaptation(Elsevier, 2021-01) Phipatanakul, Wanda; Mauger, David T.; Guilbert, Theresa W.; Bacharier, Leonard B.; Durrani, Sandy; Jackson, Daniel J.; Martinez, Fernando D.; Fitzpatrick, Anne M.; Cunningham, Amparito; Kunselman, Susan; Wheatley, Lisa M.; Bauer, Cindy; Davis, Carla M.; Geng, Bob; Kloepfer, Kirsten M.; Lapin, Craig; Liu, Andrew H.; Pongracic, Jacqueline A.; Teach, Stephen J.; Chmiel, James; Gaffin, Jonathan M.; Greenhawt, Matthew; Gupta, Meera R.; Lai, Peggy S.; Lemanske, Robert F.; Morgan, Wayne J.; Sheehan, William J.; Stokes, Jeffrey; Thorne, Peter S.; Oettgen, Hans C.; Israel, Elliot; Pediatrics, School of MedicineAsthma remains one of the most important challenges to pediatric public health in the US. A large majority of children with persistent and chronic asthma demonstrate aeroallergen sensitization, which remains a pivotal risk factor associated with the development of persistent, progressive asthma throughout life. In individuals with a tendency toward Type 2 inflammation, sensitization and exposure to high concentrations of offending allergens is associated with increased risk for development of, and impairment from, asthma. The cascade of biological responses to allergens is primarily mediated through IgE antibodies and their production is further stimulated by IgE responses to antigen exposure. In addition, circulating IgE impairs innate anti-viral immune responses. The latter effect could magnify the effects of another early life exposure associated with increased risk of the development of asthma – viral infections. Omalizumab binds to circulating IgE and thus ablates antigen signaling through IgE-related mechanisms. Further, it has been shown restore IFN-α response to rhinovirus and to reduce asthma exacerbations during the viral season. We therefore hypothesized that early blockade of IgE and IgE mediated responses with omalizumab would prevent the development and reduce the severity of asthma in those at high risk for developing asthma. Herein, we describe a double-blind, placebo-controlled trial of omalizumab in 2–3 year old children at high risk for development of asthma to prevent the development and reduce the severity of asthma. We describe the rationale, methods, and lessons learned in implementing this potentially transformative trial aimed at prevention of asthma.Item Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma(American Thoracic Society, 2021) Denlinger, Loren C.; Phillips, Brenda R.; Sorkness, Ronald L.; Bleecker, Eugene R.; Castro, Mario; DeBoer, Mark D.; Fitzpatrick, Anne M.; Hastie, Annette T.; Gaffin, Jonathan M.; Moore, Wendy C.; Peters, Michael C.; Peters, Stephen P.; Phipatanakul, Wanda; Cardet, Juan Carlos; Erzurum, Serpil C.; Fahy, John V.; Fajt, Merritt L.; Gaston, Benjamin; Levy, Bruce D.; Meyers, Deborah A.; Ross, Kristie; Teague, W. Gerald; Wenzel, Sally E.; Woodruff, Prescott G.; Zein, Joe; Jarjour, Nizar N.; Mauger, David T.; Israel, Elliot; Pediatrics, School of MedicineRationale: It is unclear why select patients with moderate-to-severe asthma continue to lose lung function despite therapy. We hypothesized that participants with the smallest responses to parenteral corticosteroids have the greatest risk of undergoing a severe decline in lung function. Objectives: To evaluate corticosteroid-response phenotypes as longitudinal predictors of lung decline. Methods: Adults within the NHLBI SARP III (Severe Asthma Research Program III) who had undergone a course of intramuscular triamcinolone at baseline and at ≥2 annual follow-up visits were evaluated. Longitudinal slopes were calculated for each participant’s post-bronchodilator FEV1% predicted. Categories of participant FEV1 slope were defined: severe decline, >2% loss/yr; mild decline, >0.5–2.0% loss/yr; no change, 0.5% loss/yr to <1% gain/yr; and improvement, ≥1% gain/yr. Regression models were used to develop predictors of severe decline. Measurements and Main Results: Of 396 participants, 78 had severe decline, 91 had mild decline, 114 had no change, and 113 showed improvement. The triamcinolone-induced difference in the post-bronchodilator FEV1% predicted (derived by baseline subtraction) was related to the 4-year change in lung function or slope category in univariable models (P < 0.001). For each 5% decrement in the triamcinolone-induced difference the FEV1% predicted, there was a 50% increase in the odds of being in the severe decline group (odds ratio, 1.5; 95% confidence interval, 1.3–1.8), when adjusted for baseline FEV1, exacerbation history, blood eosinophils and body mass index. Conclusions: Failure to improve the post-bronchodilator FEV1 after a challenge with parenteral corticosteroids is an evoked biomarker for patients at risk for a severe decline in lung function.