- Browse by Author
Browsing by Author "Phillips, Jared"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Study of the Valence Tautomer Complex [Co(sq)(cat)(3-tpp)2] for Applications in Molecular Spintronics(2023-12) Phillips, Jared; Cheng, Ruihua; Gavrin, Andrew; Joglekar, Yogesh; Anasori, Babak; Kenning, GregoryMolecular materials exhibiting bistability between two states are intriguing candidates for next generation electronic devices. Two similar classes of materials, known as spin crossover (SCO) and valence tautomers (VT) respectively, are of particular interest due to their multifunctional properties, which are controllable via several external parameters, such as temperature, light irradiation, pressure, magnetic field, and electric field. In recent years, considerable research has been dedicated to better understanding the underlying principles that govern the behavior of these materials, so that their implementation into nano-based devices might be achieved. In this report, a systematic study of the valence tautomer molecule [Co(sq)(cat)(3-tpp)2] is presented. In the first chapter, the phenomenon of valence tautomerism (VT) occurring in coordination compounds is introduced and described from the perspective of Crystal Field Theory (CFT). Further, the molecular structure and physical properties of the [Co(sq)(cat)(3-tpp)2] molecule are explored. The properties of the ferroelectric material Polyvinylidene fluoride- hexafluoropropylene (PVDF-HFP), and the 2-D Mxene Ti3C2 are also discussed. The next section details equipment development and experimental methods. Thin films of VT molecules were prepared from solution via a drop-casting approach. For thin film analysis, we have developed a custom made, fully automated Vibrating Sample Magnetometer (VSM) with a sensitivity on the order of 1 × 10-5 emu, as well as a fully automated, variable temperature, under vacuum electron transport stage, and a magneto-optic Kerr effect apparatus (MOKE). Additional experimental methods used to characterize the VT thin films include X-ray Absorption Spectroscopy (XAS), UV-visible Spectrometry (UV-Vis) and Differential Scanning Calorimetry. Experimental results obtained from these techniques are discussed and analyzed in the third section. PVDF-HFP polarization dependent isothermal spin state switching of [Co(sq)(cat)(3-tpp)2] is also discussed as well as the effects of doping [Co(sq)(cat)(3-tpp)2] with Ti3C2, followed by a conclusion and an outline of future work.Item The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials(MDPI, 2023-04-26) Yazdani, Saeed; Phillips, Jared; Ekanayaka, Thilini K.; Cheng, Ruihua; Dowben, Peter A.; Physics, School of ScienceSpin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.