- Browse by Author
Browsing by Author "Pham, Linh"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Advancements in Immunotherapeutic Treatments for Hepatocellular Carcinoma: Potential of Combination Therapies(MDPI, 2024-06-21) Zarlashat, Yusra; Mushtaq, Hassan; Pham, Linh; Abbas, Wasim; Sato, Keisaku; Medicine, School of MedicineHepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a significant global health burden, with increasing incidence rates and limited treatment options. Immunotherapy has become a promising approach due to its ability to affect the immune microenvironment and promote antitumor responses. The immune microenvironment performs an essential role in both the progression and the development of HCC, with different characteristics based on specific immune cells and etiological factors. Immune checkpoint inhibitors, including programmed death-1/programmed death-ligand 1 inhibitors (pembrolizumab, nivolumab, and durvalumab) and cytotoxic T lymphocyte antigen-4 inhibitors (tremelimumab and ipilimumab), have the potential to treat advanced HCC and overcome adverse effects, such as liver failure and chemoresistance. Phase II and phase III clinical trials highlight the efficacy of pembrolizumab and nivolumab, respectively, in advanced HCC patients, as demonstrated by their positive effects on overall survival and progression-free survival. Tremelimumab has exhibited modest response rates, though it does possess antiviral activity. Thus, it is still being investigated in ongoing clinical trials. Combination therapies with multiple drugs have demonstrated potential benefits in terms of survival and tumor response rates, improving patient outcomes compared to monotherapy, especially for advanced-stage HCC. This review addresses the clinical trials of immunotherapies for early-, intermediate-, and advanced-stage HCC. Additionally, it highlights how combination therapy can significantly enhance overall survival, progression-free survival, and objective response rate in advanced-stage HCC, where treatment options are limited.Item Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment(Elsevier, 2020-05) Kennedy, Lindsey; Meadows, Vik; Kyritsi, Konstantina; Pham, Linh; Kundu, Debjyoti; Kulkarni, Rewa; Cerritos, Karla; Demieville, Jennifer; Hargrove, Laura; Glaser, Shannon; Zhou, Tianhao; Jaeger, Victoria; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineHistamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated β-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-β1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-β1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.Item Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling(Nature Publishing Group, 2020-02-13) Kennedy, Lindsey; Meadows, Vik; Demieville, Jennifer; Hargrove, Laura; Virani, Shohaib; Glaser, Shannon; Zhou, Tianhao; Rinehart, Evan; Jaeger, Victoria; Kyritsi, Konstantina; Pham, Linh; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicinePrimary sclerosing cholangitis (PSC) is characterized by biliary damage and fibrosis. Multidrug resistance-2 gene knockout (Mdr2−/−) mice and PSC patients have increased histamine (HA) levels (synthesized by l-histidine decarboxylase, HDC) and HA receptor (HR) expression. Cholestatic HDC−/− mice display ameliorated biliary damage and hepatic fibrosis. The current study evaluated the effects of knockout of HDC−/− in Mdr2−/− mice (DKO) on biliary damage and hepatic fibrosis. WT, Mdr2−/− mice and homozygous DKO mice were used. Selected DKO mice were treated with HA. We evaluated liver damage along with HDC expression and HA serum levels. Changes in ductular reaction were evaluated along with liver fibrosis, inflammation and bile acid signaling pathways. The expression of H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C was determined. In vitro, cholangiocyte lines were treated with HA with/without H1/H2 inhibitors before measuring: H1/H2HR, TGF-β1 and VEGF-C expression. Knockout of HDC ameliorates hepatic damage, ductular reaction, fibrosis, inflammation, bile acid signaling and H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C signaling. Reactivation of the HDC/HA axis increased these parameters. In vitro, stimulation with HA increased HR expression and PKC-α, TGF-β1 and VEGF-C expression, which was reduced with HR inhibitors. Our data demonstrate the key role for the HDC/HA axis in the management of PSC progression.Item Bioinformatic analysis identified novel candidate genes with the potentials for diagnostic blood testing of primary biliary cholangitis(Public Library of Science, 2023-10-16) Pham, Hoang Nam; Pham, Linh; Sato, Keisaku; Medicine, School of MedicinePrimary biliary cholangitis (PBC) is an autoimmune disorder characterized by intrahepatic bile duct destruction and cholestatic liver injury. Diagnosis of PBC is generally based on the existence of anti-mitochondrial antibody (AMA) in blood samples; however, some PBC patients are negative for serum AMA tests, and invasive liver histological testing is required in rare PBC cases. The current study seeks novel candidate genes that are associated with PBC status and have potentials for blood diagnostic testing. Human transcriptomic profiling data of liver and blood samples were obtained from Gene Expression Omnibus (GEO). Three GEO data series (GSE79850, GSE159676, and GSE119600) were downloaded, and bioinformatic analyses were performed. Various differentially expressed genes were identified in three data series by comparing PBC patients and control individuals. Twelve candidate genes were identified, which were upregulated in both liver tissues and blood samples of PBC patients in all three data series. The enrichment analysis demonstrated that 8 out of 12 candidate genes were associated with biological functions, which were closely related to autoimmune diseases including PBC. Candidate genes, especially ITGAL showed good potentials to distinguish PBC with other diseases. These candidate genes could be useful for diagnostic blood testing of PBC, although further clinical studies are required to evaluate their potentials as diagnostic biomarkers.Item Deconvolution analysis identified altered hepatic cell landscape in primary sclerosing cholangitis and primary biliary cholangitis(Frontiers Media, 2024-05-15) Pham, Hoang Nam; Pham, Linh; Sato, Keisaku; Medicine, School of MedicineIntroduction: Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are characterized by ductular reaction, hepatic inflammation, and liver fibrosis. Hepatic cells are heterogeneous, and functional roles of different hepatic cell phenotypes are still not defined in the pathophysiology of cholangiopathies. Cell deconvolution analysis estimates cell fractions of different cell phenotypes in bulk transcriptome data, and CIBERSORTx is a powerful deconvolution method to estimate cell composition in microarray data. CIBERSORTx performs estimation based on the reference file, which is referred to as signature matrix, and allows users to create custom signature matrix to identify specific phenotypes. In the current study, we created two custom signature matrices using two single cell RNA sequencing data of hepatic cells and performed deconvolution for bulk microarray data of liver tissues including PSC and PBC patients. Methods: Custom signature matrix files were created using single-cell RNA sequencing data downloaded from GSE185477 and GSE115469. Custom signature matrices were validated for their deconvolution performance using validation data sets. Cell composition of each hepatic cell phenotype in the liver, which was identified in custom signature matrices, was calculated by CIBERSORTx and bulk RNA sequencing data of GSE159676. Deconvolution results were validated by analyzing marker expression for the cell phenotype in GSE159676 data. Results: CIBERSORTx and custom signature matrices showed comprehensive performance in estimation of population of various hepatic cell phenotypes. We identified increased population of large cholangiocytes in PSC and PBC livers, which is in agreement with previous studies referred to as ductular reaction, supporting the effectiveness and reliability of deconvolution analysis in this study. Interestingly, we identified decreased population of small cholangiocytes, periportal hepatocytes, and interzonal hepatocytes in PSC and PBC liver tissues compared to healthy livers. Discussion: Although further studies are required to elucidate the roles of these hepatic cell phenotypes in cholestatic liver injury, our approach provides important implications that cell functions may differ depending on phenotypes, even in the same cell type during liver injury. Deconvolution analysis using CIBERSORTx could provide a novel approach for studies of specific hepatic cell phenotypes in liver diseases.Item The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators(Wiley, 2021-03) Pham, Linh; Baiocchi, Leonardo; Kennedy, Lindsey; Sato, Keisaku; Meadows, Vik; Meng, Fanyin; Huang, Chiung-Kuei; Kundu, Debjyoti; Zhou, Tianhao; Chen, Lixian; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineOur daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor–binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.Item Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis(American Physiological Society, 2023) Meadows, Vik; Marakovits, Corinn; Ekser, Burcin; Kundu, Debjyoti; Zhou, Tianhao; Kyritsi, Konstantina; Pham, Linh; Chen, Lixian; Kennedy, Lindsey; Ceci, Ludovica; Wu, Nan; Carpino, Guido; Zhang, Wenjun; Isidan, Abdulkadir; Meyer, Alison; Owen, Travis; Gaudio, Eugenio; Onori, Paolo; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicinePrimary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC. NEW & NOTEWORTHY: We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.Item Mast cells (MCs) induce ductular reaction mimicking liver injury in mice via MC-derived TGF-β1 signaling(Wolters Kluwer, 2021) Kyritsi, Konstantina; Kennedy, Lindsey; Meadows, Vik; Hargrove, Laura; Demieville, Jennifer; Pham, Linh; Sybenga, Amelia; Kundu, Debjyoti; Cerritos, Karla; Meng, Fanyin; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineBackground and aims: Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-β1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-β1. Approach and results: Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-β1 receptor inhibitor (TGF-βRi), LY2109761 (10 μM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1β, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-β1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-β1 expression/secretion were measured after TGF-βRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-β1 secretion, and angiogenesis. Injection of MC-TGF-βRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-β1. Conclusions: Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-β1 may be a target in chronic cholestatic liver disease.Item Mast cells in liver disease progression: An update on current studies and implications(Wiley, 2021-08) Pham, Linh; Kennedy, Lindsey; Baiocchi, Leonardo; Meadows, Vik; Ekser, Burcin; Kundu, Debjyoti; Zhou, Tianhao; Sato, Keisaku; Glaser, Shannon; Ceci, Ludovica; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineItem Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet(Wolters Kluwer, 2021) Kennedy, Lindsey; Meadows, Vik; Sybenga, Amelia; Demieville, Jennifer; Chen, Lixian; Hargrove, Laura; Ekser, Burcin; Dar, Wasim; Ceci, Ludovica; Kundu, Debjyoti; Kyritsi, Konstantina; Pham, Linh; Zhou, Tianhao; Glaser, Shannon; Meng, Fanyin; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineBackground and aims: Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. Approach and results: Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. Conclusions: MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.