- Browse by Author
Browsing by Author "Peyser, Patricia A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies(Springer Nature, 2022) Li, Zilin; Li, Xihao; Zhou, Hufeng; Gaynor, Sheila M.; Selvaraj, Margaret Sunitha; Arapoglou, Theodore; Quick, Corbin; Liu, Yaowu; Chen, Han; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Auer, Paul L.; Bielak, Lawrence F.; Bis, Joshua C.; Blackwell, Thomas W.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Conomos, Matthew P.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Franceschini, Nora; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Lin, Bridget M.; Manichaikul, Ani; Manning, Alisa K.; Martin, Lisa W.; Mathias, Rasika A.; Meigs, James B.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Smith, Jennifer A.; Taylor, Kent D.; Taub, Margaret A.; Vasan, Ramachandran S.; Weeks, Daniel E.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Willer, Cristen J.; Natarajan, Pradeep; Peloso, Gina M.; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.Item Genome-wide analysis identifies 12 loci influencing human reproductive behavior(Nature, 2016-10) Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellman, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverly; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco J. C.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J. F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L. R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W. J. H.; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefannson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthThe genetic architecture of human reproductive behavior—age at first birth (AFB) and number of children ever born (NEB)—has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.Item Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies(Springer Nature, 2023) Li, Xihao; Quick, Corbin; Zhou, Hufeng; Gaynor, Sheila M.; Liu, Yaowu; Chen, Han; Selvaraj, Margaret Sunitha; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Bielak, Lawrence F.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Haessler, Jeffrey; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Manichaikul, Ani; Martin, Lisa W.; McGarvey, Stephen T.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Sitlani, Colleen M.; Smith, Jennifer A.; Taylor, Kent D.; Vasan, Ramachandran S.; Willer, Cristen J.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Natarajan, Pradeep; Peloso, Gina M.; Li, Zilin; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineMeta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.Item Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program(Springer Nature, 2022-07-28) DiCorpo, Daniel; Gaynor, Sheila M.; Russell, Emily M.; Westerman, Kenneth E.; Raffield, Laura M.; Majarian, Timothy D.; Wu, Peitao; Sarnowski, Chloé; Highland, Heather M.; Jackson, Anne; Hasbani, Natalie R.; de Vries, Paul S.; Brody, Jennifer A.; Hidalgo, Bertha; Guo, Xiuqing; Perry, James A.; O’Connell, Jeffrey R.; Lent, Samantha; Montasser, May E.; Cade, Brian E.; Jain, Deepti; Wang, Heming; D’Oliveira Albanus, Ricardo; Varshney, Arushi; Yanek, Lisa R.; Lange, Leslie; Palmer, Nicholette D.; Almeida, Marcio; Peralta, Juan M.; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Bielak, Lawrence F.; Chen, Chung-Shiuan; Chen, Yii-Der Ida; Choi, Won Jung; Goodarzi, Mark O.; Floyd, James S.; Irvin, Marguerite R.; Kalyani, Rita R.; Kelly, Tanika N.; Lee, Seonwook; Liu, Ching-Ti; Loesch, Douglas; Manson, JoAnn E.; Minster, Ryan L.; Naseri, Take; Pankow, James S.; Rasmussen-Torvik, Laura J.; Reiner, Alexander P.; Reupena, Muagututi’a Sefuiva; Selvin, Elizabeth; Smith, Jennifer A.; Weeks, Daniel E.; Xu, Huichun; Yao, Jie; Zhao, Wei; Parker, Stephen; Alonso, Alvaro; Arnett, Donna K.; Blangero, John; Boerwinkle, Eric; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; Duggirala, Ravindranath; He, Jiang; Heckbert, Susan R.; Kardia, Sharon L.R.; Kim, Ryan W.; Kooperberg, Charles; Liu, Simin; Mathias, Rasika A.; McGarvey, Stephen T.; Mitchell, Braxton D.; Morrison, Alanna C.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Shuldiner, Alan R.; Taylor, Kent D.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Florez, Jose C.; Wilson, James G.; Sladek, Robert; Rich, Stephen S.; Rotter, Jerome I.; Lin, Xihong; Dupuis, Josée; Meigs, James B.; Wessel, Jennifer; Manning, Alisa K.; Epidemiology, School of Public HealthThe genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.