ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Petroff, Margaret G."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Distinct Group B Streptococcus Sequence and Capsule Types Differentially Impact Macrophage Stress and Inflammatory Signaling Responses
    (American Society for Microbiology, 2021-04-16) Flaherty, Rebecca A.; Aronoff, David M.; Gaddy, Jennifer A.; Petroff, Margaret G.; Manning, Shannon D.; Medicine, School of Medicine
    Group B Streptococcus (GBS) is an opportunistic bacterial pathogen that can contribute to the induction of preterm birth in colonized pregnant women and to severe neonatal disease. Many questions regarding the mechanisms that drive GBS-associated pathogenesis remain unanswered, and it is not yet clear why virulence has been observed to vary so extensively across GBS strains. Previously, we demonstrated that GBS strains of different sequence types (STs) and capsule (CPS) types induce different cytokine profiles in infected THP-1 macrophage-like cells. Here, we expanded on these studies by utilizing the same set of genetically diverse GBS isolates to assess ST and CPS-specific differences in upstream cell death and inflammatory signaling pathways. Our results demonstrate that particularly virulent STs and CPS types, such as the ST-17 and CPS III groups, induce enhanced Jun-N-terminal protein kinase (JNK) and NF-κB pathway activation following GBS infection of macrophages compared with other ST or CPS groups. Additionally, we found that ST-17, CPS III, and CPS V GBS strains induce the greatest levels of macrophage cell death during infection and exhibit a more pronounced ability to be internalized and to survive in macrophages following phagocytosis. These data provide further support for the hypothesis that variable host innate immune responses to GBS, which significantly impact pathogenesis, stem in part from genotypic and phenotypic differences among GBS isolates. These and similar studies may inform the development of improved diagnostic, preventive, or therapeutic strategies targeting invasive GBS infections.
  • Loading...
    Thumbnail Image
    Item
    Group B Streptococcal Membrane Vesicles Induce Proinflammatory Cytokine Production and Are Sensed in an NLRP3 Inflammasome-Dependent Mechanism in a Human Macrophage-like Cell Line
    (American Chemical Society, 2025) McCutcheon, Cole R.; Gaddy, Jennifer A.; Aronoff, David M.; Manning, Shannon D.; Petroff, Margaret G.; Medicine, School of Medicine
    Group B Streptococcus (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses. While it is known that mice injected intra-amniotically with GBS MVs exhibit large-scale leukocyte infiltration, preterm birth, and subsequent fetal death, the immune effectors driving this response remain unclear. Here, we hypothesized that THP-1 macrophage-like cells respond to GBS-derived MVs by producing proinflammatory cytokines and are recognized through one or more pattern recognition receptors. We show that THP-1s produce high levels of neutrophil- and monocyte-specific chemokines in response to MVs derived from different clinical isolates of GBS. Using antibody microarrays and multiplex Luminex assays, we found that GBS MVs elicit significantly (p < 0.05) higher levels of CCL1, CCL2, CCL20, CXCL1, CXCL10, and IL-1β relative to untreated THP-1s. Using chemical inhibitors in combination with caspase-1 activity assays and Luminex assays, we further demonstrate that GBS MVs upregulated IL-1β production in a caspase-1 and NLRP3-dependent manner, ultimately identifying NLRP3 as a sensor of GBS MVs. These data indicate that MVs contain one or more pathogen-associated molecular patterns that can be sensed by the immune system and show that the NLRP3 inflammasome is a novel sensor of GBS MVs. Our data additionally indicate that MVs may serve as immune effectors that can be targeted for immunotherapeutics.
  • Loading...
    Thumbnail Image
    Item
    Production and Composition of Group B Streptococcal Membrane Vesicles Vary Across Diverse Lineages
    (Frontiers Media, 2021-11-22) McCutcheon, Cole R.; Pell, Macy E.; Gaddy, Jennifer A.; Aronoff, David M.; Petroff, Margaret G.; Manning, Shannon D.; Medicine, School of Medicine
    Although the neonatal and fetal pathogen Group B Streptococcus (GBS) asymptomatically colonizes the vaginal tract of ∼30% of pregnant women, only a fraction of their offspring develops invasive disease. We and others have postulated that these dimorphic clinical phenotypes are driven by strain variability; however, the bacterial factors that promote these divergent clinical phenotypes remain unclear. It was previously shown that GBS produces membrane vesicles (MVs) that contain active virulence factors capable of inducing adverse pregnancy outcomes. Because the relationship between strain variation and vesicle composition or production is unknown, we sought to quantify MV production and examine the protein composition, using label-free proteomics on MVs produced by diverse clinical GBS strains representing three phylogenetically distinct lineages. We found that MV production varied across strains, with certain strains displaying nearly twofold increases in production relative to others. Hierarchical clustering and principal component analysis of the proteomes revealed that MV composition is lineage-dependent but independent of clinical phenotype. Multiple proteins that contribute to virulence or immunomodulation, including hyaluronidase, C5a peptidase, and sialidases, were differentially abundant in MVs, and were partially responsible for this divergence. Together, these data indicate that production and composition of GBS MVs vary in a strain-dependent manner, suggesting that MVs have lineage-specific functions relating to virulence. Such differences may contribute to variation in clinical phenotypes observed among individuals infected with GBS strains representing distinct lineages.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University