ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Peterson, Richard G."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose
    (BMC, 2019-03-18) Sun, Gao; Jackson, Charles V.; Zimmerman, Karen; Zhang, Li-Kun; Finnearty, Courtney M.; Sandusky, George E.; Zhang, Guodong; Peterson, Richard G.; Wang, Yi-Xin (Jim); Pathology and Laboratory Medicine, School of Medicine
    Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes (T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high fat and fructose diet would exacerbate the progression of NAFLD/NASH. METHODS: Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on improvement of NASH progression in the model were evaluated. RESULTS: Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat measured by qNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF. Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect body weight and blood TG levels. CONCLUSION: WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with concurrent metabolic dysregulation.
  • Loading...
    Thumbnail Image
    Item
    Impaired expression of neuronal nitric oxide synthase in the gracile nucleus is involved in neuropathic changes in Zucker Diabetic Fatty rats with and without 2,5-hexanedione intoxication
    (Elsevier, 2016-05) Ma, Sheng-Xing; Peterson, Richard G.; Magee, Edward M.; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan; Department of Anatomy & Cell Biology, IU School of Medicine
    These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats.
  • Loading...
    Thumbnail Image
    Item
    Lipotoxic Nephropathy Is More Severe in Male than Female Rats N with Non-Insulin Diabetes Mellitus (NIDDM)
    (Hindawi, 2001-02-09) Dominguez, Jesus H.; Xu, Wei; Hawes, John W.; Peterson, Richard G.; Medicine, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Rosiglitazone reverses endothelial dysfunction but not remodeling of femoral artery in Zucker diabetic fatty rats
    (BMC, 2010-05-19) Lu, Xiao; Guo, Xiaomei; Karathanasis, Sotirios K.; Zimmerman, Karen M.; Onyia, Jude E .; Peterson, Richard G.; Kassab, Ghassan S.; Biomedical Engineering, School of Engineering and Technology
    Objectives Endothelial dysfunction precedes atherogenesis and clinical complications in type 2 diabetes. The vascular dysfunction in Zucker diabetic fatty (ZDF) rats was evaluated at different ages along with the effect of treatment with rosiglitazone (Rosi) on endothelial function and mechanical remodeling. Methods The Rosi treatment was given to ZDF rats for 3 weeks. The endothelium-dependent vasodilation and α-adrenoceptor-dependent vasoconstriction of femoral arteries were studied using an ex-vivo isovolumic myograph. The biomechanical passive property of the arteries was studied in Ca2+-free condition. The expressions of endothelial nitric oxide synthase (eNOS), α-adrenoceptor, matrix metalloproteinase 9 (MMP9), and elastase were evaluated. Results Endothelium-dependent vasorelaxation of the femoral artery was blunted at low doses in ZDF rats at 11 weeks of age and attenuated at all doses in ZDF rats at 19 weeks of age. The expression of eNOS was consistent with the endothelium-dependent vasorelaxation. The α-adrenoceptor was activated and the mechanical elastic modulus was increased in ZDF rats at 19 weeks of age. The expressions of α-adrenoceptor, MMP9, and elastase were up regulated in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks restored endothelium-dependent vasorelaxation and the expression of eNOS and the adrenoceptor activation at the doses below 10-6 mole/L in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks did not, however, improve the mechanical properties of blood vessel, the expressions of α-adrenoceptor, MMP9, and elastase in ZDF rats. Conclusion The endothelial dysfunction and mechanical remodeling are observed as early as 19 weeks of age in ZDF rat. Rosi treatment for 3 weeks improves endothelial function but not mechanical properties.
  • Loading...
    Thumbnail Image
    Item
    WKY Fatty Rat as a Model of Obesity and Non-insulin-dependent Diabetes Mellitus
    (Oxford, 1990-07) Peterson, Richard G.; Little, Leah A.; Neel, Mary-Ann; Anatomy and Cell Biology, School of Medicine
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University