- Browse by Author
Browsing by Author "Peterson, Josh F."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing(Wiley, 2015-07) Birdwell, Kelly A.; Decker, Brian; Barbarino, Julia M.; Peterson, Josh F.; Stein, C. Michael; Sadee, Wolfgang; Wang, Danxin; Vinks, Alexander A.; He, Yijing; Swen, Jesse J.; Leeder, J. Steven; van Schaik, RHN; Thummel, Kenneth E.; Klein, Teri E.; Caudle, Kelly E.; MacPhee, Iain A.M.; Department of Medicine, IU School of MedicineTacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation. Individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus as compared with those who are CYP3A5 nonexpressers (poor metabolizers), possibly delaying achievement of target blood concentrations. We summarize evidence from the published literature supporting this association and provide dosing recommendations for tacrolimus based on CYP3A5 genotype when known (updates at www.pharmgkb.org).Item Cost-effectiveness of CYP2C19-guided antiplatelet therapy in patients with acute coronary syndrome and percutaneous coronary intervention informed by real-world data(Nature, 2020-10) Limdi, Nita A.; Cavallari, Larisa H.; Lee, Craig R.; Hillegass, William B.; Holmes, Ann M.; Skaar, Todd C.; Pisu, Maria; Dillon, Chrisly; Beitelshees, Amber L.; Empey, Philip E.; Duarte, Julio D.; Diaby, Vakaramoko; Gong, Yan; Johnson, Julie A.; Graves, John; Garbett, Shawn; Zhou, Zilu; Peterson, Josh F.; Medicine, School of MedicineCurrent guidelines recommend dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitors following percutaneous coronary intervention (PCI). CYP2C19 genotype can guide DAPT selection, prescribing ticagrelor or prasugrel for loss-of-function (LOF) allele carriers (genotype-guided escalation). Cost-effectiveness analyses (CEA) are traditionally grounded in clinical trial data. We conduct a CEA using real-world data using a 1-year decision-analytic model comparing primary strategies: universal empiric clopidogrel (base case), universal ticagrelor, and genotype-guided escalation. We also explore secondary strategies commonly implemented in practice, wherein all patients are prescribed ticagrelor for 30 days post PCI. After 30 days, all patients are switched to clopidogrel irrespective of genotype (nonguided de-escalation) or to clopidogrel only if patients do not harbor an LOF allele (genotype-guided de-escalation). Compared with universal clopidogrel, both universal ticagrelor and genotype-guided escalation were superior with improvement in quality-adjusted life years (QALY’s). Only genotype-guided escalation was cost-effective ($42,365/QALY) and demonstrated the highest probability of being cost-effective across conventional willingness-to-pay thresholds. In the secondary analysis, compared with the nonguided de-escalation strategy, although genotype-guided de-escalation and universal ticagrelor were more effective, with ICER of $188,680/QALY and $678,215/QALY, respectively, they were not cost-effective. CYP2C19 genotype-guided antiplatelet prescribing is cost-effective compared with either universal clopidogrel or universal ticagrelor using real-world implementation data. The secondary analysis suggests genotype-guided and nonguided de-escalation may be viable strategies, needing further evaluation.Item Implementing a pragmatic clinical trial to tailor opioids for acute pain on behalf of the IGNITE ADOPT PGx investigators.(Wiley, 2022-07-28) Cavallari, Larisa H.; Cicali, Emily; Wiisanen, Kristin; Fillingim, Roger B.; Chakraborty, Hrishikesh; Myers, Rachel A.; Blake, Kathryn V.; Asiyanbola, Bolanle; Baye, Jordan F.; Bronson, Wesley H.; Cook, Kelsey J.; Elwood, Erica N.; Gray, Chancellor F.; Gong, Yan; Hines, Lindsay; Kannry, Joseph; Kucher, Natalie; Lynch, Sheryl; Nguyen, Khoa A.; Obeng, Aniwaa Owusu; Pratt, Victoria M.; Prieto, Hernan A.; Ramos, Michelle; Sadeghpour, Azita; Singh, Rajbir; Rosenman, Marc; Starostik, Petr; Thomas, Cameron D.; Tillman, Emma; Dexter, Paul R.; Horowitz, Carol R.; Orlando, Lori A.; Peterson, Josh F.; Skaar, Todd C.; Van Driest, Sara L.; Volpi, Simona; Voora, Deepak; Parvataneni, Hari K.; Johnson, Julie A.Opioid prescribing for postoperative pain management is challenging because of inter-patient variability in opioid response and concern about opioid addiction. Tramadol, hydrocodone, and codeine depend on the cytochrome P450 2D6 (CYP2D6) enzyme for formation of highly potent metabolites. Individuals with reduced or absent CYP2D6 activity (i.e., intermediate metabolizers [IMs] or poor metabolizers [PMs], respectively) have lower concentrations of potent opioid metabolites and potentially inadequate pain control. The primary objective of this prospective, multicenter, randomized pragmatic trial is to determine the effect of postoperative CYP2D6-guided opioid prescribing on pain control and opioid usage. Up to 2020 participants, age ≥8 years, scheduled to undergo a surgical procedure will be enrolled and randomized to immediate pharmacogenetic testing with clinical decision support (CDS) for CYP2D6 phenotype-guided postoperative pain management (intervention arm) or delayed testing without CDS (control arm). CDS is provided through medical record alerts and/or a pharmacist consult note. For IMs and PM in the intervention arm, CDS includes recommendations to avoid hydrocodone, tramadol, and codeine. Patient-reported pain-related outcomes are collected 10 days and 1, 3, and 6 months after surgery. The primary outcome, a composite of pain intensity and opioid usage at 10 days postsurgery, will be compared in the subgroup of IMs and PMs in the intervention (n = 152) versus the control (n = 152) arm. Secondary end points include prescription pain medication misuse scores and opioid persistence at 6 months. This trial will provide data on the clinical utility of CYP2D6 phenotype-guided opioid selection for improving postoperative pain control and reducing opioid-related risks.Item Implementing a pragmatic clinical trial to tailor opioids for chronic pain on behalf of the IGNITE ADOPT PGx investigators(Wiley, 2024) Skaar, Todd C.; Myers, Rachel A.; Fillingim, Roger B.; Callaghan, John T.; Cicali, Emily; Eadon, Michael T.; Elwood, Erica N.; Ginsburg, Geoffrey S.; Lynch, Sheryl; Nguyen, Khoa A.; Obeng, Aniwaa Owusu; Park, Haesuk; Pratt, Victoria M.; Rosenman, Marc; Sadeghpour, Azita; Shuman, Saskia; Singh, Rajbir; Tillman, Emma M.; Volpi, Simona; Wiisanen, Kristin; Winterstein, Almut G.; Horowitz, Carol R.; Voora, Deepak; Orlando, Lori; Chakraborty, Hrishikesh; Van Driest, Sara; Peterson, Josh F.; Cavallari, Larisa A.; Johnson, Julie A.; Dexter, Paul R.; IGNITE Pragmatic Trials Network; Medicine, School of MedicineChronic pain is a prevalent condition with enormous economic burden. Opioids such as tramadol, codeine, and hydrocodone are commonly used to treat chronic pain; these drugs are activated to more potent opioid receptor agonists by the hepatic CYP2D6 enzyme. Results from clinical studies and mechanistic understandings suggest that CYP2D6-guided therapy will improve pain control and reduce adverse drug events. However, CYP2D6 is rarely used in clinical practice due in part to the demand for additional clinical trial evidence. Thus, we designed the ADOPT-PGx (A Depression and Opioid Pragmatic Trial in Pharmacogenetics) chronic pain study, a multicenter, pragmatic, randomized controlled clinical trial, to assess the effect of CYP2D6 testing on pain management. The study enrolled 1048 participants who are taking or being considered for treatment with CYP2D6-impacted opioids for their chronic pain. Participants were randomized to receive immediate or delayed (by 6 months) genotyping of CYP2D6 with clinical decision support (CDS). CDS encouraged the providers to follow the CYP2D6-guided trial recommendations. The primary study outcome is the 3-month absolute change in the composite pain intensity score assessed using Patient-Reported Outcomes Measurement Information System (PROMIS) measures. Follow-up will be completed in July 2024. Herein, we describe the design of this trial along with challenges encountered during enrollment.Item Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing(Springer Nature, 2019-10) Cavallari, Larisa H.; Van Driest, Sara L.; Prows, Cynthia A.; Bishop, Jeffrey R.; Limdi, Nita A.; Pratt, Victoria M.; Ramsey, Laura B.; Smith, D. Max; Tuteja, Sony; Duong, Benjamin Q.; Hicks, J. Kevin; Lee, James C.; Obeng, Aniwaa Owusu; Beitelshees, Amber L.; Bell, Gillian C.; Blake, Kathryn; Crona, Daniel J.; Dressler, Lynn; Gregg, Ryan A.; Hines, Lindsay J.; Scott, Stuart A.; Shelton, Richard C.; Weitzel, Kristin Wiisanen; Johnson, Julie A.; Peterson, Josh F.; Empey, Philip E.; Skaar, Todd C.; Medical and Molecular Genetics, School of MedicinePURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.Item Multi-site investigation of strategies for the implementation of CYP2C19 genotype-guided antiplatelet therapy(Wiley, 2018) Empey, Philip E.; Stevenson, James M.; Tuteja, Sony; Weitzel, Kristin W.; Angiolillo, Dominick J.; Beitelshees, Amber L.; Coons, James C.; Duarte, Julio D.; Franchi, Francesco; Jeng, Linda J. B.; Johnson, Julie A.; Kreutz, Rolf P.; Limdi, Nita A.; Maloney, Kristin A.; Obeng, Aniwaa Owusu; Peterson, Josh F.; Petry, Natasha; Pratt, Victoria M.; Rollini, Fabiana; Scott, Stuart A.; Skaar, Todd C.; Vesely, Mark R.; Stouffer, George A.; Wilke, Russell A.; Cavallari, Larisa H.; Lee, Craig R.; Medicine, School of MedicineCYP2C19 genotype-guided antiplatelet therapy following percutaneous coronary intervention is increasingly implemented in clinical practice. However, challenges such as selecting a testing platform, communicating test results, building clinical decision support processes, providing patient and provider education, and integrating methods to support the translation of emerging evidence to clinical practice are barriers to broad adoption. In this report, we compare and contrast implementation strategies of 12 early adopters, describing solutions to common problems and initial performance metrics for each program. Key differences between programs included the test result turnaround time and timing of therapy changes which are both related to CYP2C19 testing model and platform used. Sites reported the need for new informatics infrastructure, expert clinicians such as pharmacists to interpret results, physician champions, and ongoing education. Consensus lessons learned are presented to provide a path forward for those seeking to implement similar clinical pharmacogenomics programs within their institutions. This article is protected by copyright.Item Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention(Elsevier, 2018-01-22) Cavallari, Larisa H.; Lee, Craig R.; Beitelshees, Amber L.; Cooper-DeHoff, Rhonda M.; Duarte, Julio D.; Voora, Deepak; Kimmel, Stephen E.; McDonough, Caitrin W.; Gong, Yan; Dave, Chintan V.; Pratt, Victoria M.; Alestock, Tameka D.; Anderson, R. David; Alsip, Jorge; Ardati, Amer K.; Brott, Brigitta C.; Brown, Lawrence; Chumnumwat, Supatat; Clare-Salzler, Michael J.; Coons, James C.; Denny, Joshua C.; Dillon, Chrisly; Elsey, Amanda R.; Hamadeh, Issam; Harada, Shuko; Hillegass, William B.; Hines, Lindsay; Horenstein, Richard B.; Howell, Lucius A.; Jeng, Linda J.B.; Kelemen, Mark D.; Lee, Y.M.; Magvanjav, Oyunbileg; Montasser, May; Nelson, David R.; Nutescu, Edith A.; Nwaba, Devon C.; Pakyz, Ruth E.; Palmer, Kathleen; Peterson, Josh F.; Pollin, Toni I.; Quinn, Alison H.; Robinson, Shawn W.; Schub, Jamie; Skaar, Todd C.; Smith, Donald M.; Sriramoju, Vindhya B.; Starostik, Petr; Stys, Tomasz P.; Stevenson, James M.; Varunok, Nicholas; Vesely, Mark R.; Wake, Dyson T.; Weck, Karen E.; Weitzel, Kristin W.; Wilke, Russell A.; Willig, James; Zhao, Richard Y.; Kreutz, Rolf P.; Stouffer, George A.; Empey, Philip E.; Limdi, Nita A.; Shuldiner, Alan R.; Winterstein, Almut G.; Johnson, Julie A.; Medical and Molecular Genetics, School of MedicineOBJECTIVES: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI). BACKGROUND: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI. METHODS: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights. RESULTS: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60). CONCLUSIONS: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value.Item Multisite Investigation of Strategies for the Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy(Wiley, 2018-10) Empey, Philip E.; Stevenson, James M.; Tuteja, Sony; Weitzel, Kristin W.; Angiolillo, Dominick J.; Beitelshees, Amber L.; Coons, James C.; Duarte, Julio D.; Franchi, Francesco; Jeng, Linda J.B.; Johnson, Julie A.; Kreutz, Rolf P.; Limdi, Nita A.; Maloney, Kristin A.; Obeng, Aniwaa Owusu; Peterson, Josh F.; Petry, Natasha; Pratt, Victoria M.; Rollini, Fabiana; Scott, Stuart A.; Skaar, Todd C.; Vesely, Mark R.; Stouffer, George A.; Wilke, Russell A.; Cavallari, Larisa H.; Lee, Craig R.; IGNITE Network; Medicine, School of MedicineCYP2C19 genotype-guided antiplatelet therapy following percutaneous coronary intervention is increasingly implemented in clinical practice. However, challenges such as selecting a testing platform, communicating test results, building clinical decision support processes, providing patient and provider education, and integrating methods to support the translation of emerging evidence to clinical practice are barriers to broad adoption. In this report, we compare and contrast implementation strategies of 12 early adopters, describing solutions to common problems and initial performance metrics for each program. Key differences between programs included the test result turnaround time and timing of therapy changes, which are both related to the CYP2C19 testing model and platform used. Sites reported the need for new informatics infrastructure, expert clinicians such as pharmacists to interpret results, physician champions, and ongoing education. Consensus lessons learned are presented to provide a path forward for those seeking to implement similar clinical pharmacogenomics programs within their institutionsItem Opportunity for Genotype-Guided Prescribing Among Adult Patients in 11 US Health Systems.(Wiley, 2021-07) Hicks, J. Kevin; El Rouby, Nihal; Ong, Henry H.; Schildcrout, Jonathan S.; Ramsey, Laura B.; Shi, Yaping; Anne Tang, Leigh; Aquilante, Christina L.; Beitelshees, Amber L.; Blake, Kathryn V.; Cimino, James J.; Davis, Brittney H.; Empey, Philip E.; Kao, David P.; Lemkin, Daniel L.; Limdi, Nita A.; P Lipori, Gloria; Rosenman, Marc B.; Skaar, Todd C.; Teal, Evgenia; Tuteja, Sony; Wiley, Laura K.; Williams, Helen; Winterstein, Almut G.; Van Driest, Sara L.; Cavallari, Larisa H.; Peterson, Josh F.The value of utilizing a multigene pharmacogenetic panel to tailor pharmacotherapy is contingent on the prevalence of prescribed medications with an actionable pharmacogenetic association. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has categorized over 35 gene-drug pairs as "level A," for which there is sufficiently strong evidence to recommend that genetic information be used to guide drug prescribing. The opportunity to use genetic information to tailor pharmacotherapy among adult patients was determined by elucidating the exposure to CPIC level A drugs among 11 Implementing Genomics In Practice Network (IGNITE)-affiliated health systems across the US. Inpatient and/or outpatient electronic-prescribing data were collected between January 1, 2011 and December 31, 2016 for patients ≥ 18 years of age who had at least one medical encounter that was eligible for drug prescribing in a calendar year. A median of ~ 7.2 million adult patients was available for assessment of drug prescribing per year. From 2011 to 2016, the annual estimated prevalence of exposure to at least one CPIC level A drug prescribed to unique patients ranged between 15,719 (95% confidence interval (CI): 15,658-15,781) in 2011 to 17,335 (CI: 17,283-17,386) in 2016 per 100,000 patients. The estimated annual exposure to at least 2 drugs was above 7,200 per 100,000 patients in most years of the study, reaching an apex of 7,660 (CI: 7,632-7,687) per 100,000 patients in 2014. An estimated 4,748 per 100,000 prescribing events were potentially eligible for a genotype-guided intervention. Results from this study show that a significant portion of adults treated at medical institutions across the United States is exposed to medications for which genetic information, if available, should be used to guide prescribing.Item Prescribing Prevalence of Medications With Potential Genotype-Guided Dosing in Pediatric Patients(American Medical Association, 2020-12) Ramsey, Laura B.; Ong, Henry H.; Schildcrout, Jonathan S.; Shi, Yaping; Tang, Leigh Anne; Hicks, J. Kevin; El Rouby, Nihal; Cavallari, Larisa H.; Tuteja, Sony; Aquilante, Christina L.; Beitelshees, Amber L.; Lemkin, Daniel L.; Blake, Kathryn V.; Williams, Helen; Cimino, James J.; Davis, Brittney H.; Limdi, Nita A.; Empey, Philip E.; Horvat, Christopher M.; Kao, David P.; Lipori, Gloria P.; Rosenman, Marc B.; Skaar, Todd C.; Teal, Evgenia; Winterstein, Almut G.; Obeng, Aniwaa Owusu; Salyakina, Daria; Gupta, Apeksha; Gruber, Joshua; McCafferty-Fernandez, Jennifer; Bishop, Jeffrey R.; Rivers, Zach; Benner, Ashley; Tamraz, Bani; Long-Boyle, Janel; Peterson, Josh F.; Van Driest, Sara L.; Pediatrics, School of MedicineImportance: Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective: To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, setting, and participants: This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures: Prescription of 38 level A medications based on electronic health records. Main outcomes and measures: Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results: Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and relevance: These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants.