- Browse by Author
Browsing by Author "Perrin, George Q."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells(American Society of Hematology, 2023) Kaczmarek, Radoslaw; Piñeros, Annie R.; Patterson, Paige E.; Bertolini, Thais B.; Perrin, George Q.; Sherman, Alexandra; Born, Jameson; Arisa, Sreevani; Arvin, Matthew C.; Kamocka, Malgorzata M.; Martinez, Michelle M.; Dunn, Kenneth W.; Quinn, Sean M.; Morris, Johnathan J.; Wilhelm, Amelia R.; Kaisho, Tsuneyasu; Munoz-Melero, Maite; Biswas, Moanaro; Kaplan, Mark H.; Linnemann, Amelia K.; George, Lindsey A.; Camire, Rodney M.; Herzog, Roland W.; Pediatrics, School of MedicineDespite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.Item Update on clinical gene therapy for hemophilia(American Society of Hematology, 2019-01-31) Perrin, George Q.; Herzog, Roland W.; Markusic, David M.; Pediatrics, School of MedicineIn contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.