ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pentchev, Julian V."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Alzheimer’s Disease Polygenic Risk in the LEADS Cohort
    (Wiley, 2025-01-03) Nudelman, Kelly N.; Pentchev, Julian V.; Jackson, Trever; Eloyan, Ani; Dage, Jeffrey L.; Foroud, Tatiana M.; Hammers, Dustin B.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Medical and Molecular Genetics, School of Medicine
    Background: Currently, it is unclear to what extent late‐onset Alzheimer’s disease (AD) risk variants contribute to early‐onset AD (EOAD). One method to clarify the contribution of late‐onset AD genetic risk to EOAD is to investigate the association of AD polygenic risk scores (PRS) with EOAD. We hypothesize that in the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS), EOAD participants will have greater PRS than early‐onset amyloid‐negative cognitively‐impaired participants (EOnonAD) and controls, and investigate the association of AD PRS with age of disease onset (AoO) and cognitive performance. Methods: GWAS data was generated for LEADS participants, including those with EOAD, EOnonAD, and controls, with the Illumina Global Screening Array. A PRS was calculated using the 31 SNPs and weights published previously by Desikan et al. (2017) for LEADS participants with imputed GWAS data (N = 369). Logistic regression models including age, sex, PRS, and genetic ancestry principal components were tested to identify predictors of EOAD (N = 210) vs. EOnonAD (N = 69) and controls (N = 89). ANCOVA models were used to assess group differences in PRS scores. Kaplan‐Meier regression was used to assess differences in EOAD AoO for tertile‐binned PRS groups. Within EOAD, pre‐calculated cognitive domain scores for speed and attention, working memory, episodic memory, language, and visuospatial performance were assessed for correlation with PRS. Results: The AD PRS was a predictor of EOAD (p = 0.014), with the model explaining 10.5% of variance (X2 = 40.971, p<0.001). EOAD participants had higher PRS scores (mean = 0.0012, standard deviation (SD) = 0.015) compared to EOnonAD and controls (mean = ‐0.0018, SD = 0.015) (F = 6.602, p = 0.011). Survival analysis indicated no significant differences in EOAD AoO between PRS groups (X2 = 3.396, p = 0.183). In the EOAD group, PRS was associated with cognitive scores for speed and attention (r = 0.204, p = 0.007), language (r = 0.230, p = 0.002), and visuospatial performance (r = 0.166, p = 0.037). Conclusions: In the LEADS cohort, AD PRS is a predictor for EOAD, and is associated with cognitive performance, but does not predict EOAD AoO. This suggests that while late onset AD‐associated genetic variants contribute to disease risk and processes, they do not account for a large portion of disease risk, and do not explain differences in disease AoO in the LEADS cohort.
  • Loading...
    Thumbnail Image
    Item
    The Relationship Between Learning Slopes and Alzheimer’s Disease Biomarkers in Cognitively Unimpaired Participants with and without Subjective Memory Concerns
    (Taylor & Francis, 2023) Hammers, Dustin B.; Pentchev, Julian V.; Kim, Hee Jin; Spencer, Robert J.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of Medicine
    Objective: Learning slopes represent serial acquisition of information during list-learning tasks. Although several calculations for learning slopes exist, the Learning Ratio (LR) has recently demonstrated the highest sensitivity toward changes in cognition and Alzheimer's disease (AD) biomarkers. However, investigation of learning slopes in cognitively unimpaired individuals with subjective memory concerns (SMC) has been limited. The current study examines the association of learning slopes to SMC, and the role of SMC in the relationship between learning slopes and AD biomarkers in cognitively unimpaired individuals. Method: Data from 950 cognitively unimpaired participants from the Alzheimer's Disease Neuroimaging Initiative (aged 55 to 89) were used to calculate learning slope metrics. Learning slopes among those with and without SMC were compared with demographic correction, and the relationships of learning slopes with AD biomarkers of bilateral hippocampal volume and β-amyloid pathology were determined. Results: Learning slopes were consistently predictive of hippocampal atrophy and β-amyloid deposition. Results were heightened for LR relative to the other learning slopes. Additionally, interaction analyses revealed different associations between learning slopes and hippocampal volume as a function of SMC status. Conclusions: Learning slopes appear to be sensitive to SMC and AD biomarkers, with SMC status influencing the relationship in cognitively unimpaired participants. These findings advance our knowledge of SMC, and suggest that LR - in particular - can be an important tool for the detection of AD pathology in both SMC and in AD clinical trials.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University