- Browse by Author
Browsing by Author "Peng, Min"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer(Elsevier, 2016-05) Yang, Zheqiong; Peng, Min; Cheng, Liang; Jones, Kimya; Maihle, Nita J.; Mivechi, Nahid F.; Ko, Lan; Department of Pathology and Laboratory Medicine, IU School of MedicineHuman breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer.Item Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency(Cell Press, 2021) Cong, Ke; Peng, Min; Kousholt, Arne Nedergaard; Lee, Wei Ting C.; Lee, Silviana; Nayak, Sumeet; Krais, John; VanderVere-Carozza, Pamela S.; Pawelczak, Katherine S.; Calvo, Jennifer; Panzarino, Nicholas J.; Turchi, John J.; Johnson, Neil; Jonkers, Jos; Rothenberg, Eli; Cantor, Sharon B.; Medicine, School of MedicineMutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.