- Browse by Author
Browsing by Author "Pediatrics, IU School of Medicine"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Analysis of Uncharacterized mKiaa1211 Expression during Mouse Development and Cardiovascular Morphogenesis(MDPI, 2019-06-22) Snider, Paige L.; Snider, Elizabeth; Simmons, Olga; Conway, Simon J.; Pediatrics, IU School of MedicineMammalian Kiaa1211 and Kiaa1211-like are a homologous pair of uncharacterized, highly conserved genes cloned from fetal and adult brain cDNA libraries. Herein we map the in utero spatiotemporal expression of mKiaa1211 and mKiaa1211L mRNA and their expression patterns in postnatal testis, skin, gastrointestinal, and adipose progenitor tissues. Significantly, mKiaa1211 is present throughout the early stages of mouse heart development, particularly in the second heart field (SHF) lineage as it differentiates from mesenchymal cells into cardiomyocytes. We also show that mKiaa1211 is expressed within several early neuronal tissues destined to give rise to central, peripheral, and sympathetic nervous system structures. Expression profiling revealed that the paralog mKiaa1211L is not expressed during the normal developmental process and that mKiaa1211 expression was noticeably absent from most adult terminally differentiated tissues. Finally, we confirm that a previously uncharacterized CRISPR/CAS-generated mKiaa1211 mouse mutant allele is hypomorphic.Item Comparative analysis of diagnostic platforms for measurement of differentially methylated insulin DNA(POL Scientific, 2019) Farr, Ryan J.; Wong, Wilson K. M.; Maynard, Cody-lee; Tersey, Sarah A.; Mirmira, Raghavendra G.; Hardikar, Anandwardhan A.; Joglekar, Mugdha V.; Pediatrics, IU School of MedicineCirculating cell-free DNA (cfDNA) has been intensively investigated as a diagnostic and prognostic marker for various cancers. In recent years, presence of unmethylated insulin cfDNA in the circulation has been correlated with pancreatic β-cell death and risk of developing type 1 diabetes. Digital (d)PCR is an increasingly popular method of quantifying insulin cfDNA due to its ability to determine absolute copy numbers, and its increased sensitivity when compared to the more routinely used quantitative PCR. Multiple platforms have been developed to carry out dPCR. However, not all technologies perform comparably, thereby necessitating evaluation of each platform. Here, we compare two dPCR platforms: the QuantStudio 3D (QS3D, Applied Biosystems) and the QX200 (Bio-Rad), to measure copies of unmethylated/methylated insulin plasmids. The QS3D detected greater copy numbers of the plasmids than the QX200 (manual mode), whereas QX200 demonstrated minimal replicate variability, increased throughput, ease of use and the potential for automation. Overall, the performance of QX200, in our hands, was better suited to measure differentially methylated insulin cfDNA.Item Development and validation of a pragmatic natural language processing approach to identifying falls in older adults in the emergency department(Biomed Central, 2019-07-22) Patterson, Brian W.; Jacobsohn, Gwen C.; Shah, Manish N.; Song, Yiqiang; Maru, Apoorva; Venkatesh, Arjun K.; Zhong, Monica; Taylor, Katherine; Hamedani, Azita G.; Mendonça, Eneida A.; Pediatrics, IU School of MedicineBACKGROUND: Falls among older adults are both a common reason for presentation to the emergency department, and a major source of morbidity and mortality. It is critical to identify fall patients quickly and reliably during, and immediately after, emergency department encounters in order to deliver appropriate care and referrals. Unfortunately, falls are difficult to identify without manual chart review, a time intensive process infeasible for many applications including surveillance and quality reporting. Here we describe a pragmatic NLP approach to automating fall identification. METHODS: In this single center retrospective review, 500 emergency department provider notes from older adult patients (age 65 and older) were randomly selected for analysis. A simple, rules-based NLP algorithm for fall identification was developed and evaluated on a development set of 1084 notes, then compared with identification by consensus of trained abstractors blinded to NLP results. RESULTS: The NLP pipeline demonstrated a recall (sensitivity) of 95.8%, specificity of 97.4%, precision of 92.0%, and F1 score of 0.939 for identifying fall events within emergency physician visit notes, as compared to gold standard manual abstraction by human coders. CONCLUSIONS: Our pragmatic NLP algorithm was able to identify falls in ED notes with excellent precision and recall, comparable to that of more labor-intensive manual abstraction. This finding offers promise not just for improving research methods, but as a potential for identifying patients for targeted interventions, quality measure development and epidemiologic surveillance.Item Hemogenic Endothelial Cells Can Transition to Hematopoietic Stem Cells through a B-1 Lymphocyte-Biased State during Maturation in the Mouse Embryo(Elsevier, 2019-07-09) Kobayashi, Michihiro; Tarnawsky, Stefan P.; Wei, Haichao; Mishra, Akansha; Azevedo Portilho, Nathalia; Wenzel, Pamela; Davis, Brian; Wu, Jiaqian; Hadland, Brandon; Yoshimoto, Momoko; Pediatrics, IU School of MedicinePrecursors of hematopoietic stem cells (pre-HSCs) have been identified as intermediate precursors during the maturation process from hemogenic endothelial cells to HSCs in the aorta-gonad-mesonephros (AGM) region of the mouse embryo at embryonic day 10.5. Although pre-HSCs acquire an efficient adult-repopulating ability after ex vivo co-culture, their native hematopoietic capacity remains unknown. Here, we employed direct transplantation assays of CD45-VE-cadherin(VC)+KIT+(V+K+) cells (containing pre-HSCs) into immunodeficient neonatal mice that permit engraftment of embryonic hematopoietic precursors. We found that freshly isolated V+K+ cells exhibited significantly greater B-1 lymphocyte-biased repopulating capacity than multilineage repopulating capacity. Additionally, B cell colony-forming assays demonstrated the predominant B-1 progenitor colony-forming ability of these cells; however, increased B-2 progenitor colony-forming ability emerged after co-culture with Akt-expressing AGM endothelial cells, conditions that support pre-HSC maturation into HSCs. Our studies revealed an unexpected B-1 lymphocyte bias of the V+K+ population and acquisition of B-2 potential during commitment to the HSC fate.Item Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits(Biomed Central, 2019-07-25) Glicksberg, Benjamin S.; Amadori, Letizia; Akers, Nicholas K.; Sukhavasi, Katyayani; Franzén, Oscar; Li, Li; Belbin, Gillian M.; Akers, Kristin L.; Shameer, Khader; Badgeley, Marcus A.; Johnson, Kipp W.; Readhead, Ben; Darrow, Bruce J.; Kenny, Eimear E.; Betsholtz, Christer; Ermel, Raili; Skogsberg, Josefin; Ruusalepp, Arno; Schadt, Eric E.; Dudley, Joel T.; Ren, Hongxia; Kovacic, Jason C.; Giannarelli, Chiara; Li, Shuyu D.; Björkegren, Johan L. M.; Chen, Rong; Pediatrics, IU School of MedicineBACKGROUND: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene. RESULTS: We identified LoFs in 433 genes significantly associated with at least one of 10 major CVD traits. Next, we used RNA-sequence data from the STARNET study to validate 115 of the 433 LoF harboring-genes in that their expression levels were concordantly associated with corresponding CVD traits. Together with the documented hepatic lipid-lowering gene, APOC3, the expression levels of six additional liver LoF-genes were positively associated with levels of plasma lipids in STARNET. Candidate LoF-genes were subjected to gene silencing in HepG2 cells with marked overall effects on cellular LDLR, levels of triglycerides and on secreted APOB100 and PCSK9. In addition, we identified novel LoFs in DGAT2 associated with lower plasma cholesterol and glucose levels in BioMe that were also confirmed in STARNET, and showed a selective DGAT2-inhibitor in C57BL/6 mice not only significantly lowered fasting glucose levels but also affected body weight. CONCLUSION: In sum, by integrating genetic and electronic medical record data, and leveraging one of the world's largest human RNA-sequence datasets (STARNET), we identified known and novel CVD-trait related genes that may serve as targets for CVD therapeutics and as such merit further investigation.Item Plasma exosomes from children with juvenile dermatomyositis are taken up by human aortic endothelial cells and are associated with altered gene expression in those cells(Biomed Central, 2019-07-12) Jiang, Kaiyu; Karasawa, Rie; Hu, Zihua; Chen, Yanmin; Holmes, Lucy; O’Neil, Kathleen M.; Jarvis, James N.; Pediatrics, IU School of MedicineBACKGROUND: The pathology of juvenile dermatomyositis (JDM) is characterized by prominent vessel wall and perivascular inflammation. This feature of the disease has remained unexplained and under-investigated. We have hypothesized that plasma exosomes, which play an important role in inter-cellular communication, may play a role in the vascular injury associated with JDM. OBJECTIVE: To characterize the circulating exosomes of children with JDM and determine whether the small RNA cargoes within those exosomes are capable of altering transcriptional programs within endothelial cells. DESIGN/METHODS: We purified exosomes from plasma samples of children with active, untreated JDM (n = 6) and healthy controls (n = 9). We characterized the small RNA cargoes in JDM and control exosomes by RNA sequencing using the Illumina HiSeq 2500 platform. We then incubated isolated exosomes from healthy controls and children with JDM with cultured human aortic endothelial cells (HAEC) for 24 h. Fluorescence microscopy was used to confirm that both control and JDM exosomes were taken up by HAEC. RNA was then purified from HAEC that had been incubated with either control or JDM exosomes and sequenced on the Illumina platform. Differential expression of mRNAs from HAEC incubated with control or JDM exosomes was ascertained using standard computational methods. Finally, we assessed the degree to which differential gene expression in HAEC could be attributed to the different small RNA cargoes in JDM vs control exosomes using conventional and novel analytic methods. RESULTS: We identified 10 small RNA molecules that showed differential abundance when we compared JDM and healthy control exosomes. Fluorescence microscopy of labeled exosomes confirmed that both JDM and control exosomes were taken up by HAEC. Differential gene expression analysis revealed 59 genes that showed differential expression between HAEC incubated with JDM exosomes vs HAEC incubated with exosomes from controls. Statistical analysis of gene expression data demonstrated that multiple miRNAs exerted transcriptional control on multiple genes with HAEC. CONCLUSIONS: Plasma exosomes from children with active, untreated JDM are taken up by HAEC and are associated with alterations in gene expression in those cells. These findings provide new insight into potential mechanisms leading to the targeting of vascular tissue by the immune system in JDM.Item PU.1 controls fibroblast polarization and tissue fibrosis(Springer Nature, 2019-02) Wohlfahrt, Thomas; Rauber, Simon; Uebe, Steffen; Luber, Markus; Soare, Alina; Ekici, Arif; Weber, Stefanie; Matei, Alexandru-Emil; Chen, Chih-Wei; Maier, Christiane; Karouzakis, Emmanuel; Kiener, Hans P.; Pachera, Elena; Dees, Clara; Beyer, Christian; Daniel, Christoph; Gelse, Kolja; Kremer, Andreas E.; Naschberger, Elisabeth; Stürzl, Michael; Butter, Falk; Sticherling, Michael; Finotto, Susetta; Kreuter, Alexander; Kaplan, Mark H.; Jüngel, Astrid; Gay, Steffen; Nutt, Stephen L.; Boykin, David W.; Poon, Gregory M. K.; Distler, Oliver; Schett, Georg; Distler, Jörg H. W.; Ramming, Andreas; Pediatrics, IU School of MedicineFibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.Item Regulating the adaptive immune response to respiratory virus infection(Springer Nature, 2012) Braciale, Thomas J.; Sun, Jie; Kim, Taeg S.; Pediatrics, IU School of MedicineRecent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.Item Type 1 diabetes(Elsevier, 2018-06-16) DiMeglio, Linda A.; Evans-Molina, Carmella; Oram, Richard A.; Pediatrics, IU School of MedicineType 1 diabetes is a chronic autoimmune disease characterised by insulin deficiency and resultant hyperglycaemia. Knowledge of type 1 diabetes has rapidly increased over the past 25 years, resulting in a broad understanding about many aspects of the disease, including its genetics, epidemiology, immune and β-cell phenotypes, and disease burden. Interventions to preserve β cells have been tested, and several methods to improve clinical disease management have been assessed. However, wide gaps still exist in our understanding of type 1 diabetes and our ability to standardise clinical care and decrease disease-associated complications and burden. This Seminar gives an overview of the current understanding of the disease and potential future directions for research and care.