- Browse by Author
Browsing by Author "Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Mechanical power in pediatric acute respiratory distress syndrome: a PARDIE study(Springer Nature, 2022-01-03) Bhalla, Anoopindar K.; Klein, Margaret J.; Alapont, Vicent Modesto I.; Emeriaud, Guillaume; Kneyber, Martin C. J.; Medina, Alberto; Cruces, Pablo; Diaz, Franco; Takeuchi, Muneyuki; Maddux, Aline B.; Mourani, Peter M.; Camilo, Cristina; White, Benjamin R.; Yehya, Nadir; Pappachan, John; Di Nardo, Matteo; Shein, Steven; Newth, Christopher; Khemani, Robinder; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineBackground: Mechanical power is a composite variable for energy transmitted to the respiratory system over time that may better capture risk for ventilator-induced lung injury than individual ventilator management components. We sought to evaluate if mechanical ventilation management with a high mechanical power is associated with fewer ventilator-free days (VFD) in children with pediatric acute respiratory distress syndrome (PARDS). Methods: Retrospective analysis of a prospective observational international cohort study. Results: There were 306 children from 55 pediatric intensive care units included. High mechanical power was associated with younger age, higher oxygenation index, a comorbid condition of bronchopulmonary dysplasia, higher tidal volume, higher delta pressure (peak inspiratory pressure-positive end-expiratory pressure), and higher respiratory rate. Higher mechanical power was associated with fewer 28-day VFD after controlling for confounding variables (per 0.1 J·min-1·Kg-1 Subdistribution Hazard Ratio (SHR) 0.93 (0.87, 0.98), p = 0.013). Higher mechanical power was not associated with higher intensive care unit mortality in multivariable analysis in the entire cohort (per 0.1 J·min-1·Kg-1 OR 1.12 [0.94, 1.32], p = 0.20). But was associated with higher mortality when excluding children who died due to neurologic reasons (per 0.1 J·min-1·Kg-1 OR 1.22 [1.01, 1.46], p = 0.036). In subgroup analyses by age, the association between higher mechanical power and fewer 28-day VFD remained only in children < 2-years-old (per 0.1 J·min-1·Kg-1 SHR 0.89 (0.82, 0.96), p = 0.005). Younger children were managed with lower tidal volume, higher delta pressure, higher respiratory rate, lower positive end-expiratory pressure, and higher PCO2 than older children. No individual ventilator management component mediated the effect of mechanical power on 28-day VFD. Conclusions: Higher mechanical power is associated with fewer 28-day VFDs in children with PARDS. This association is strongest in children < 2-years-old in whom there are notable differences in mechanical ventilation management. While further validation is needed, these data highlight that ventilator management is associated with outcome in children with PARDS, and there may be subgroups of children with higher potential benefit from strategies to improve lung-protective ventilation. Take home message: Higher mechanical power is associated with fewer 28-day ventilator-free days in children with pediatric acute respiratory distress syndrome. This association is strongest in children <2-years-old in whom there are notable differences in mechanical ventilation management.Item Noninvasive Ventilation for Pediatric Acute Respiratory Distress Syndrome: Experience From the 2016/2017 Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Prospective Cohort Study(Wolters Kluwer, 2023) Emeriaud, Guillaume; Pons-Òdena, Marti; Bhalla, Anoopindar K.; Shein, Steven L.; Killien, Elizabeth Y.; Modesto i Alapont, Vicent; Rowan, Courtney; Baudin, Florent; Lin, John C.; Grégoire, Gabrielle; Napolitano, Natalie; Mayordomo-Colunga, Juan; Diaz, Franco; Cruces, Pablo; Medina, Alberto; Smith, Lincoln; Khemani, Robinder G.; Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineObjectives: The worldwide practice and impact of noninvasive ventilation (NIV) in pediatric acute respiratory distress syndrome (PARDS) is unknown. We sought to describe NIV use and associated clinical outcomes in PARDS. Design: Planned ancillary study to the 2016/2017 prospective Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology study. Setting: One hundred five international PICUs. Patients: Patients with newly diagnosed PARDS admitted during 10 study weeks. Interventions: None. Measurements and main results: Children were categorized by their respiratory support at PARDS diagnosis into NIV or invasive mechanical ventilation (IMV) groups. Of 708 subjects with PARDS, 160 patients (23%) received NIV at PARDS diagnosis (NIV group). NIV failure rate (defined as tracheal intubation or death) was 84 of 160 patients (53%). Higher nonrespiratory pediatric logistic organ dysfunction (PELOD-2) score, Pa o2 /F io2 was less than 100 at PARDS diagnosis, immunosuppression, and male sex were independently associated with NIV failure. NIV failure was 100% among patients with nonrespiratory PELOD-2 score greater than 2, Pa o2 /F io2 less than 100, and immunosuppression all present. Among patients with Pa o2 /F io2 greater than 100, children in the NIV group had shorter total duration of NIV and IMV, than the IMV at initial diagnosis group. We failed to identify associations between NIV use and PICU survival in a multivariable Cox regression analysis (hazard ratio 1.04 [95% CI, 0.61-1.80]) or mortality in a propensity score matched analysis ( p = 0.369). Conclusions: Use of NIV at PARDS diagnosis was associated with shorter exposure to IMV in children with mild to moderate hypoxemia. Even though risk of NIV failure was high in some children, we failed to identify greater hazard of mortality in these patients.Item Respiratory pathogens associated with intubated pediatric patients following hematopoietic cell transplant(Wiley, 2020-08) Gertz, Shira J.; McArthur, Jennifer; Hsing, Deyin D.; Nitu, Mara E.; Smith, Lincoln S.; Loomis, Ashley; Fitzgerald, Julie C.; Duncan, Christine N.; Mahadeo, Kris M.; Moffet, Jerelyn; Hall, Mark W.; Pinos, Emily L.; Cheifetz, Ira M.; Rowan, Courtney M.; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineBackground We describe organisms found in the respiratory tracts of a multicenter cohort of pediatric hematopoietic cell transplant (HCT) recipients with respiratory failure. Methods Twelve centers contributed up to 25 pediatric allogeneic HCT recipients requiring mechanical ventilation for respiratory failure to a retrospective database. Positive respiratory pathogens and method of obtaining sample were recorded. Outcomes were assessed using Mann-Whitney U test or chi-squared analysis. Results Of the 222 patients in the database, ages 1 month through 21 years, 34.6% had a positive respiratory culture. 105 pathogens were identified in 77 patients; of those, 48.6% were viral, 34.3% bacterial, 16.2% fungal, and 1% parasitic. PICU mortality with a respiratory pathogen was 68.8% compared to 54.9% for those without a respiratory pathogen (P = .045). Those with a positive respiratory pathogen had longer PICU length of stay, 20 days (IQR 14.0, 36.8) vs 15 (IQR 6.5, 32.0), P = .002, and a longer course of mechanical ventilation, 17 days (IQR 10, 29.5) vs 8 (3, 17), P < .0001. Method of pathogen identification, type of pathogen, and the presence of multiple pathogens were not associated with changes in PICU outcomes. Conclusions In this multicenter retrospective cohort of intubated pediatric post-HCT patients, there was high variability in the respiratory pathogens identified. Type of pathogen and method of detection did not affect PICU mortality. The presence of any organism leads to increased PICU mortality, longer PICU stay, and increased duration of mechanical ventilation suggesting that early detection and treatment of pathogens may be beneficial in this population.Item The Use and Duration of Preintubation Respiratory Support Is Associated With Increased Mortality in Immunocompromised Children With Acute Respiratory Failure(Wolters Kluwer, 2022) Lindell, Robert B.; Fitzgerald, Julie C.; Rowan, Courtney M.; Flori, Heidi R.; Di Nardo, Matteo; Napolitano, Natalie; Traynor, Danielle M.; Lenz, Kyle B.; Emeriaud, Guillaume; Jeyapalan, Asumthia; Nishisaki, Akira; National Emergency Airway Registry for Children (NEAR4KIDS); Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineObjectives: To determine the association between preintubation respiratory support and outcomes in patients with acute respiratory failure and to determine the impact of immunocompromised (IC) diagnoses on outcomes after adjustment for illness severity. Design: Retrospective multicenter cohort study. Setting: Eighty-two centers in the Virtual Pediatric Systems database. Patients: Children 1 month to 17 years old intubated in the PICU who received invasive mechanical ventilation (IMV) for greater than or equal to 24 hours. Interventions: None. Measurements and main results: High-flow nasal cannula (HFNC) or noninvasive positive-pressure ventilation (NIPPV) or both were used prior to intubation in 1,825 (34%) of 5,348 PICU intubations across 82 centers. When stratified by IC status, 50% of patients had no IC diagnosis, whereas 41% were IC without prior hematopoietic cell transplant (HCT) and 9% had prior HCT. Compared with patients intubated without prior support, preintubation exposure to HFNC (adjusted odds ratio [aOR], 1.33; 95% CI, 1.10-1.62) or NIPPV (aOR, 1.44; 95% CI, 1.20-1.74) was associated with increased odds of PICU mortality. Within subgroups of IC status, preintubation respiratory support was associated with increased odds of PICU mortality in IC patients (HFNC: aOR, 1.50; 95% CI, 1.11-2.03; NIPPV: aOR, 1.76; 95% CI, 1.31-2.35) and HCT patients (HFNC: aOR, 1.75; 95% CI, 1.07-2.86; NIPPV: aOR, 1.85; 95% CI, 1.12-3.02) compared with IC/HCT patients intubated without prior respiratory support. Preintubation exposure to HFNC/NIPPV was not associated with mortality in patients without an IC diagnosis. Duration of HFNC/NIPPV greater than 6 hours was associated with increased mortality in IC HCT patients (HFNC: aOR, 2.41; 95% CI, 1.05-5.55; NIPPV: aOR, 2.53; 95% CI, 1.04-6.15) and patients compared HCT patients with less than 6-hour HFNC/NIPPV exposure. After adjustment for patient and center characteristics, both preintubation HFNC/NIPPV use (median, 15%; range, 0-63%) and PICU mortality varied by center. Conclusions: In IC pediatric patients, preintubation exposure to HFNC and/or NIPPV is associated with increased odds of PICU mortality, independent of illness severity. Longer duration of exposure to HFNC/NIPPV prior to IMV is associated with increased mortality in HCT patients.