- Browse by Author
Browsing by Author "Pechman, Kimberly R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Leveraging longitudinal diffusion MRI data to quantify differences in white matter microstructural decline in normal and abnormal aging(bioRxiv, 2023-05-18) Archer, Derek B.; Schilling, Kurt; Shashikumar, Niranjana; Jasodanand, Varuna; Moore, Elizabeth E.; Pechman, Kimberly R.; Bilgel, Murat; Beason-Held, Lori L.; An, Yang; Shafer, Andrea; Ferrucci, Luigi; Risacher, Shannon L.; Gifford, Katherine A.; Landman, Bennett A.; Jefferson, Angela L.; Saykin, Andrew J.; Resnick, Susan M.; Hohman, Timothy J.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging [Alzheimer's Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study of Aging (BLSA), Vanderbilt Memory & Aging Project (VMAP)] was free-water corrected and harmonized. This dataset included 1,723 participants (age at baseline: 72.8±8.87 years, 49.5% male) and 4,605 imaging sessions (follow-up time: 2.97±2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42±1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. Results: While we found global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. Conclusions: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. Highlights: Longitudinal data was free-water corrected and harmonizedGlobal effects of white matter decline were seen in normal and abnormal agingThe free-water metric was most vulnerable to abnormal agingCingulum free-water was the most vulnerable to abnormal aging.Item Sex, racial, and APOE-ε4 allele differences in longitudinal white matter microstructure in multiple cohorts of aging and Alzheimer’s disease(bioRxiv, 2024-06-12) Peterson, Amalia; Sathe, Aditi; Zaras, Dimitrios; Yang, Yisu; Durant, Alaina; Deters, Kacie D.; Shashikumar, Niranjana; Pechman, Kimberly R.; Kim, Michael E.; Gao, Chenyu; Khairi, Nazirah Mohd; Li, Zhiyuan; Yao, Tianyuan; Huo, Yuankai; Dumitrescu, Logan; Gifford, Katherine A.; Wilson, Jo Ellen; Cambronero, Francis; Risacher, Shannon L.; Beason-Held, Lori L.; An, Yang; Arfanakis, Konstantinos; Erus, Guray; Davatzikos, Christos; Tosun, Duygu; Toga, Arthur W.; Thompson, Paul M.; Mormino, Elizabeth C.; Zhang, Panpan; Schilling, Kurt; Alzheimer’s Disease Neuroimaging Initiative (ADNI); BIOCARD Study Team; Alzheimer’s Disease Sequencing Project (ADSP); Albert, Marilyn; Kukull, Walter; Biber, Sarah A.; Landman, Bennett A.; Johnson, Sterling C.; Schneider, Julie; Barnes, Lisa L.; Bennett, David A.; Jefferson, Angela L.; Resnick, Susan M.; Saykin, Andrew J.; Hohman, Timothy J.; Archer, Derek B.; Radiology and Imaging Sciences, School of MedicineIntroduction: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. Methods: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. Results: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. Discussion: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.Item White matter microstructural metrics are sensitively associated with clinical staging in Alzheimer's disease(Wiley, 2023-05-17) Yang, Yisu; Schilling, Kurt; Shashikumar, Niranjana; Jasodanand, Varuna; Moore, Elizabeth E.; Pechman, Kimberly R.; Bilgel, Murat; Beason-Held, Lori L.; An, Yang; Shafer, Andrea; Risacher, Shannon L.; Landman, Bennett A.; Jefferson, Angela L.; Saykin, Andrew J.; Resnick, Susan M.; Hohman, Timothy J.; Archer, Derek B.; Alzheimer's Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: White matter microstructure may be abnormal along the Alzheimer's disease (AD) continuum. Methods: Diffusion magnetic resonance imaging (dMRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 627), Baltimore Longitudinal Study of Aging (BLSA, n = 684), and Vanderbilt Memory & Aging Project (VMAP, n = 296) cohorts were free-water (FW) corrected and conventional, and FW-corrected microstructural metrics were quantified within 48 white matter tracts. Microstructural values were subsequently harmonized using the Longitudinal ComBat technique and inputted as independent variables to predict diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI], AD). Models were adjusted for age, sex, race/ethnicity, education, apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status. Results: Conventional dMRI metrics were associated globally with diagnostic status; following FW correction, the FW metric itself exhibited global associations with diagnostic status, but intracellular metric associations were diminished. Discussion: White matter microstructure is altered along the AD continuum. FW correction may provide further understanding of the white matter neurodegenerative process in AD. Highlights: Longitudinal ComBat successfully harmonized large-scale diffusion magnetic resonance imaging (dMRI) metrics.Conventional dMRI metrics were globally sensitive to diagnostic status. Free-water (FW) correction mitigated intracellular associations with diagnostic status.The FW metric itself was globally sensitive to diagnostic status. Multivariate conventional and FW-corrected models may provide complementary information.