- Browse by Author
Browsing by Author "Peak‑Chew, Sew"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy(Springer, 2023) Yang, Yang; Garringer, Holly J.; Shi, Yang; Lövestam, Sofia; Peak‑Chew, Sew; Zhang, Xianjun; Kotecha, Abhay; Bacioglu, Mehtap; Koto, Atsuo; Takao, Masaki; Grazia Spillantini, Maria; Ghetti, Bernardino; Vidal, Ruben; Murzin, Alexey G.; Scheres, Sjors H. W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineA 21-nucleotide duplication in one allele of SNCA was identified in a previously described disease with abundant α-synuclein inclusions that we now call juvenile-onset synucleinopathy (JOS). This mutation translates into the insertion of MAAAEKT after residue 22 of α-synuclein, resulting in a protein of 147 amino acids. Both wild-type and mutant proteins were present in sarkosyl-insoluble material that was extracted from frontal cortex of the individual with JOS and examined by electron cryo-microscopy. The structures of JOS filaments, comprising either a single protofilament, or a pair of protofilaments, revealed a new α-synuclein fold that differs from the folds of Lewy body diseases and multiple system atrophy (MSA). The JOS fold consists of a compact core, the sequence of which (residues 36–100 of wild-type α-synuclein) is unaffected by the mutation, and two disconnected density islands (A and B) of mixed sequences. There is a non-proteinaceous cofactor bound between the core and island A. The JOS fold resembles the common substructure of MSA Type I and Type II dimeric filaments, with its core segment approximating the C-terminal body of MSA protofilaments B and its islands mimicking the N-terminal arm of MSA protofilaments A. The partial similarity of JOS and MSA folds extends to the locations of their cofactor-binding sites. In vitro assembly of recombinant wild-type α-synuclein, its insertion mutant and their mixture yielded structures that were distinct from those of JOS filaments. Our findings provide insight into a possible mechanism of JOS fibrillation in which mutant α-synuclein of 147 amino acids forms a nucleus with the JOS fold, around which wild-type and mutant proteins assemble during elongation.