ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Patterson, Andrea M."

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Age and Sex Divergence in Hematopoietic Radiosensitivity in Aged Mouse Models of the Hematopoietic Acute Radiation Syndrome
    (BioOne, 2022) Patterson, Andrea M.; Vemula, Sasidhar; Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Fisher, Alexa; Wu, Tong; Sellamuthu, Rajendran; Feng, Hailin; Katz, Barry P.; DesRosiers, Colleen M.; Pelus, Louis M.; Cox, George N.; MacVittie, Thomas J.; Orschell, Christie M.; Medicine, School of Medicine
    The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.
  • Loading...
    Thumbnail Image
    Item
    Development of a Model of the Acute and Delayed Effects of High Dose Radiation Exposure in Jackson Diversity Outbred Mice; Comparison to Inbred C57BL/6 Mice
    (Wolters Kluwer, 2020-11) Patterson, Andrea M.; Plett, P. Artur; Chua, Hui Lin; Sampson, Carol H.; Fisher, Alexa; Feng, Hailin; Unthank, Joseph L.; Miller, Steve J.; Katz, Barry P.; MacVittie, Thomas J.; Orschell, Christie M.; Medicine, School of Medicine
    Development of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity. Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, developed by the Collaborative Cross Consortium using eight founder strains, and may represent a more accurate model of humans than inbred strains. Herein, models of the Hematopoietic-Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure were developed in JDO mice and compared to inbred C57BL/6. The dose response relationship curve in JDO mice mirrored the more shallow curves of primates and humans, characteristic of genetic diversity. JDO mice were more radioresistant than C57BL/6 and differed in sensitivity to antibiotic countermeasures. The model was validated with pegylated-G-CSF, which provided significantly enhanced 30-d survival and accelerated blood recovery. Long-term JDO survivors exhibited increased recovery of blood cells and functional bone marrow hematopoietic progenitors compared to C57BL/6. While JDO hematopoietic stem cells declined more in number, they maintained a greater degree of quiescence compared to C57BL/6, which is essential for maintaining function. These JDO radiation models offer many of the advantages of small animals with the genetic diversity of large animals, providing an attractive alternative to currently available radiation animal models.
  • Loading...
    Thumbnail Image
    Item
    G-CSF in stem cell mobilization: new insights, new questions
    (AME Publishing Company, 2017-07) Patterson, Andrea M.; Pelus, Louis M.; Microbiology and Immunology, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Hematopoietic Stem Cell Identification Postirradiation
    (Springer, 2023) Patterson, Andrea M.; Orschell, Christie M.; Pelus, Louis M.; Medicine, School of Medicine
    Radiation exposure is particularly damaging to cells of the hematopoietic system, inducing pancytopenia and bone marrow failure. The study of these processes, as well as the development of treatments to prevent hematopoietic damage or enhance recovery after radiation exposure, often require analysis of bone marrow cells early after irradiation. While flow cytometry methods are well characterized for identification and analysis of bone marrow populations in the nonirradiated setting, multiple complications arise when dealing with irradiated tissues. Among these complications is a radiation-induced loss of c-Kit, a central marker for conventional gating of primitive hematopoietic populations in mice. These include hematopoietic stem cells (HSCs), which are central to blood reconstitution and life-long bone marrow function, and are important targets of analysis in these studies. This chapter outlines techniques for HSC identification and analysis from mouse bone marrow postirradiation.
  • Loading...
    Thumbnail Image
    Item
    Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE)
    (Springer, 2022) Orschell, Christie M.; Wu, Tong; Patterson, Andrea M.; Medicine, School of Medicine
    Purpose of review: Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings: Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary: Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.
  • Loading...
    Thumbnail Image
    Item
    Optimizing and Profiling Prostaglandin E2 as a Medical Countermeasure for the Hematopoietic Acute Radiation Syndrome
    (BioOne, 2021) Patterson, Andrea M.; Wu, Tong; Chua, Hui Lin; Sampson, Carol H.; Fisher, Alexa; Singh, Pratibha; Guise, Theresa A.; Feng, Hailin; Muldoon, Jessica; Wright, Laura; Plett, P. Artur; Pelus, Louis M.; Orschell, Christie M.; Microbiology and Immunology, School of Medicine
    Identification of medical countermeasures (MCM) to mitigate radiation damage and/or protect first responders is a compelling unmet medical need. The prostaglandin E2 (PGE2) analog, 16,16 dimethyl-PGE2 (dmPGE2), has shown efficacy as a radioprotectant and radiomitigator that can enhance hematopoiesis and ameliorate intestinal mucosal cell damage. In this study, we optimized the time of administration of dmPGE2 for protection and mitigation against mortality from the hematopoietic acute radiation syndrome (H-ARS) in young adult mice, evaluated its activity in pediatric and geriatric populations, and investigated potential mechanisms of action. Windows of 30-day survival efficacy for single administration of dmPGE2 were defined as within 3 h prior to and 6-30 h after total-body γ irradiation (TBI). Radioprotective and radio-mitigating efficacy was also observed in 2-year-old geriatric mice and 6-week-old pediatric mice. PGE2 receptor agonist studies suggest that signaling through EP4 is primarily responsible for the radioprotective effects. DmPGE2 administration prior to TBI attenuated the drop in red blood cells and platelets, accelerated recovery of all peripheral blood cell types, and resulted in higher hematopoietic and mesenchymal stem cells in survivor bone marrow. Multiplex analysis of bone marrow cytokines together with RNA sequencing of hematopoietic stem cells indicated a pro-hematopoiesis cytokine milieu induced by dmPGE2, with IL-6 and G-CSF strongly implicated in dmPGE2-mediated radioprotective activity. In summary, we have identified windows of administration for significant radio-mitigation and radioprotection by dmPGE2 in H-ARS, demonstrated survival efficacy in special populations, and gained insight into radioprotective mechanisms, information useful towards development of dmPGE2 as a MCM for first responders, military personnel, and civilians facing radiation threats.
  • Loading...
    Thumbnail Image
    Item
    Prostaglandin E2 Enhances Aged Hematopoietic Stem Cell Function
    (Springer, 2021-10) Patterson, Andrea M.; Plett, P. Artur; Sampson, Carol H.; Simpson, Edward; Liu, Yunlong; Pelus, Louis M.; Orschell, Christie M.; Medicine, School of Medicine
    Aging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E2 (dmPGE2) enhances transplantation, but the effect of dmPGE2 on aged HSCs is unknown. Here we show that ex vivo pulse of bone marrow cells from young adult (3 mo) and aged (25 mo) mice with dmPGE2 prior to serial competitive transplantation significantly enhanced long-term repopulation from aged grafts in primary and secondary transplantation (27 % increase in chimerism) to a similar degree as young grafts (21 % increase in chimerism; both p < 0.05). RNA sequencing of phenotypically-isolated HSCs indicated that the molecular responses to dmPGE2 are similar in young and old, including CREB1 activation and increased cell survival and homeostasis. Common genes within these pathways identified likely key mediators of HSC enhancement by dmPGE2 and age-related signaling differences. HSC expression of the PGE2 receptor EP4, implicated in HSC function, increased with age in both mRNA and surface protein. This work suggests that aging does not alter the major dmPGE2 response pathways in HSCs which mediate enhancement of both young and old HSC function, with significant implications for expanding the therapeutic potential of elderly HSC transplantation.
  • Loading...
    Thumbnail Image
    Item
    A Single Radioprotective Dose of Prostaglandin E2 Blocks Irradiation-Induced Apoptotic Signaling and Early Cycling of Hematopoietic Stem Cells
    (Elsevier, 2020-07-30) Patterson, Andrea M.; Liu, Liqiong; Sampson, Carol H.; Plett, P. Artur; Li, Hongge; Singh, Pratibha; Mohammad, Khalid S.; Hoggatt, Jonathan; Capitano, Maegan L.; Orschell, Christie M.; Pelus, Louis M.; Medicine, School of Medicine
    Ionizing radiation exposure results in acute and delayed bone marrow suppression. Treatment of mice with 16,16-dimethyl prostaglandin E2 (dmPGE2) prior to lethal ionizing radiation (IR) facilitates survival, but the cellular and molecular mechanisms are unclear. In this study we show that dmPGE2 attenuates loss and enhances recovery of bone marrow cellularity, corresponding to a less severe hematopoietic stem cell nadir, and significantly preserves long-term repopulation capacity and progenitor cell function. Mechanistically, dmPGE2 suppressed hematopoietic stem cell (HSC) proliferation through 24 h post IR, which correlated with fewer DNA double-strand breaks and attenuation of apoptosis, mitochondrial compromise, oxidative stress, and senescence. RNA sequencing of HSCs at 1 h and 24 h post IR identified a predominant interference with IR-induced p53-downstream gene expression at 1 h, and confirmed the suppression of IR-induced cell-cycle genes at 24 h. These data identify mechanisms of dmPGE2 radioprotection and its potential role as a medical countermeasure against radiation exposure.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University