- Browse by Author
Browsing by Author "Pati, Sarthak"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Best practices to evaluate the impact of biomedical research software-metric collection beyond citations(Oxford University Press, 2024) Afiaz, Awan; Ivanov, Andrey A.; Chamberlin, John; Hanauer, David; Savonen, Candace L.; Goldman, Mary J.; Morgan, Martin; Reich, Michael; Getka, Alexander; Holmes, Aaron; Pati, Sarthak; Knight, Dan; Boutros, Paul C.; Bakas, Spyridon; Caporaso, J. Gregory; Del Fiol, Guilherme; Hochheiser, Harry; Haas, Brian; Schloss, Patrick D.; Eddy, James A.; Albrecht, Jake; Fedorov, Andrey; Waldron, Levi; Hoffman, Ava M.; Bradshaw, Richard L.; Leek, Jeffrey T.; Wright, Carrie; Pathology and Laboratory Medicine, School of MedicineMotivation: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite challenges with improper citation. Results: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric collection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, justify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software's impact. Challenges are associated, including distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spectrum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress. Availability and implementation: More information about the analysis, as well as access to data and code is available at https://github.com/fhdsl/ITCR_Metrics_manuscript_website.Item Privacy preservation for federated learning in health care(Elsevier, 2024-07-12) Pati, Sarthak; Kumar, Sourav; Varma, Amokh; Edwards, Brandon; Lu, Charles; Qu, Liangqiong; Wang, Justin J.; Lakshminarayanan, Anantharaman; Wang, Shih-han; Sheller, Micah J.; Chang, Ken; Singh, Praveer; Rubin, Daniel L.; Kalpathy-Cramer, Jayashree; Bakas, Spyridon; Pathology and Laboratory Medicine, School of MedicineArtificial intelligence (AI) shows potential to improve health care by leveraging data to build models that can inform clinical workflows. However, access to large quantities of diverse data is needed to develop robust generalizable models. Data sharing across institutions is not always feasible due to legal, security, and privacy concerns. Federated learning (FL) allows for multi-institutional training of AI models, obviating data sharing, albeit with different security and privacy concerns. Specifically, insights exchanged during FL can leak information about institutional data. In addition, FL can introduce issues when there is limited trust among the entities performing the compute. With the growing adoption of FL in health care, it is imperative to elucidate the potential risks. We thus summarize privacy-preserving FL literature in this work with special regard to health care. We draw attention to threats and review mitigation approaches. We anticipate this review to become a health-care researcher's guide to security and privacy in FL.