- Browse by Author
Browsing by Author "Park, Sunju"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HOXB13 Mediates Tamoxifen Resistance and Invasiveness in Human Breast Cancer by Suppressing ERα and Inducing IL-6 Expression(American Association for Cancer Research, 2013-09-01) Shah, Nilay; Jin, Kideok; Cruz, Leigh-Ann; Park, Sunju; Sadik, Helen; Cho, Soonweng; Goswami, Chirayu Pankaj; Nakshatri, Harikrishna; Gupta, Rajnish; Chang, Howard Y.; Zhang, Zhe; Cimino-Mathews, Ashley; Cope, Leslie; Umbricht, Christopher; Sukumar, SaraswatiMost breast cancers expressing the estrogen receptor α (ERα) are treated successfully with the receptor antagonist tamoxifen (TAM), but many of these tumors recur. Elevated expression of the homeodomain transcription factor HOXB13 correlates with TAM-resistance in ERα-positive (ER+) breast cancer, but little is known regarding the underlying mechanism. Our comprehensive evaluation of HOX gene expression using tiling microarrays, with validation, showed that distant metastases from TAM-resistant patients also displayed high HOXB13 expression, suggesting a role for HOXB13 in tumor dissemination and survival. Here we show that HOXB13 confers TAM resistance by directly downregulating ERα transcription and protein expression. HOXB13 elevation promoted cell proliferation in vitro and growth of tumor xenografts in vivo. Mechanistic investigations showed that HOXB13 transcriptionally upregulated interleukin (IL)-6, activating the mTOR pathway via STAT3 phosphorylation to promote cell proliferation and fibroblast recruitment. Accordingly, mTOR inhibition suppressed fibroblast recruitment and proliferation of HOXB13-expressing ER+ breast cancer cells and tumor xenografts, alone or in combination with TAM. Taken together, our results establish a function for HOXB13 in TAM resistance through direct suppression of ERα and they identify the IL-6 pathways as mediator of disease progression and recurrence.Item HOXB7 is an ERα cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance(American Association for Cancer Research, 2015-09) Jin, Kideok; Park, Sunju; Teo, Wei Wen; Korangath, Preethi; Cho, Sean Soonweng; Yoshida, Takahiro; Győrffy, Balázs; Goswami, Chirayu Pankaj; Nakshatri, Harikrishna; Cruz, Leigh-Ann; Zhou, Weiqiang; Ji, Hongkai; Su, Ying; Ekram, Muhammad; Wu, Zhengsheng; Zhu, Tao; Polyak, Kornelia; Sukumar, Saraswati; Surgery, School of MedicineWhy breast cancers become resistant to tamoxifen despite continued expression of the estrogen receptor alpha (ERα) and what factors are responsible for high HER2 expression in these tumors remains an enigma. HOXB7 ChIP analysis followed by validation showed that HOXB7 physically interacts with ERα, and that the HOXB7-ERα complex enhances transcription of many ERα target genes including HER2. Investigating strategies for controlling HOXB7, our studies revealed that MYC, stabilized via phosphorylation mediated by EGFR-HER2 signaling, inhibits transcription of miRNA-196a, a HOXB7 repressor. This leads to increased expression of HOXB7, ER-target genes and HER2. Repressing MYC using small molecule inhibitors reverses these events, and causes regression of breast cancer xenografts. The MYC-HOXB7-HER2 signaling pathway is eminently targetable in endocrine-resistant breast cancer.