ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Park, Jung Hyun"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative analysis of nuclei isolation methods for brain single-nucleus RNA sequencing
    (bioRxiv, 2025-03-26) Kersey, Holly N.; Acri, Dominic J.; Dabin, Luke C.; Hartigan, Kelly; Mustaklem, Richard; Park, Jung Hyun; Kim, Jungsu; Medical and Molecular Genetics, School of Medicine
    Single-nucleus RNA sequencing (snRNA-seq) enables resolving cellular heterogeneity in complex tissues. snRNA-seq overcomes limitations of traditional single-cell RNA-seq by using nuclei instead of cells, allowing to utilize frozen tissues and difficult-to-isolate cell types. Although various nuclei isolation methods have been developed, systematic evaluations of their effects on nuclear integrity and subsequent data quality remain lacking, a critical gap with profound implications for the rigor and reproducibility. To address this, we compared three mechanistically distinct nuclei isolation strategies with brain tissues: a sucrose gradient centrifugation-based method, a spin column-based method, and a machine-assisted platform. All methods successfully captured diverse cell types but revealed considerable protocol-dependent differences in cell type proportions, transcriptional homogeneity, and the preservation of cell-type-specific and cell-state-specific markers. Moreover, isolation workflows differentially influenced contamination levels from ambient, mitochondrial, and ribosomal RNAs. Our findings establish nuclei isolation methodology as a critical experimental variable shaping snRNA-seq data quality and biological interpretation. Motivation: Single-nucleus RNA sequencing (snRNA-seq) has become an essential tool for transcriptomic analysis of complex tissues. However, the quality and efficiency of data generation depend heavily on the method used for nuclear isolation. The existing isolation techniques vary in their ability to preserve nuclear integrity, minimize ambient RNA contamination, and optimize recovery rates. Despite these differences in quality, a systematic comparison of these methods, specifically for brain tissue, is lacking. This gap poses a challenge for researchers in choosing the most suitable approach for their particular experimental requirements. To address this critical issue, our study directly compared three nuclei isolation methods and evaluated their performance in terms of yield, purity, and downstream sequencing quality. By providing a comprehensive assessment, we aim to guide researchers in selecting the most appropriate isolation protocol for their snRNA-seq experiments, ensuring optimal results and advancing the study of complex brain tissues at the single-nucleus level.
  • Loading...
    Thumbnail Image
    Item
    Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis
    (Springer Nature, 2024-05-11) Kim, Byungwook; Dabin, Luke Child; Tate, Mason Douglas; Karahan, Hande; Sharify, Ahmad Daniel; Acri, Dominic J.; Al-Amin, Md Mamun; Philtjens, Stéphanie; Smith, Daniel Curtis; Wijeratne, H. R. Sagara; Park, Jung Hyun; Jucker, Mathias; Kim, Jungsu; Medical and Molecular Genetics, School of Medicine
    SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University