- Browse by Author
Browsing by Author "Park, Hyeon-Myeong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effect of thermal cycling frequency on the durability of Yb-Gd-Y-based thermal barrier coatings(Elsevier, 2019-04) Lyu, Guanlin; Choi, Baig-Gyu; Lu, Zhe; Park, Hyeon-Myeong; Jung, Yeon-Gil; Zhang, Jing; Mechanical and Energy Engineering, School of Engineering and TechnologyThe effects of thermal cycling frequency and buffer layer on the crack generation and thermal fatigue behaviors of Yb–Gd–Y-stabilized zirconia (YGYZ)-based thermal barrier coatings (TBCs) were investigated through thermally graded mechanical fatigue (TGMF) test. TGMF tests with low- (period of 10 min) and high-frequency (period of 2 min) cycling were performed at 1100 °C with a 60 MPa tensile load. Different cycling frequencies in TGMF test generate two kinds of crack propagation modes. The sample with low-frequency cycling condition shows penetration cracks in the YGYZ top coat, and multiple narrow vertical cracks are generated in high-frequency cycling. To enhance the thermomechanical properties, different buffer layers were introduced into the TBC systems, which were deposited with the regular (RP) or high-purity 8 wt% yttria stabilized zirconia (HP-YSZ) feedstock. The purity of the feedstock powder used for preparing the buffer layer affected the fracture behavior, showing a better thermal durability for the TBCs with the HP-YSZ in both frequency test conditions. A finite element model is developed, which takes creep effect into account due to thermal cycling. The model shows the high stresses at the interfaces between different layers due to differential thermal expansion. The failure mechanisms of YGYZ-based TBCs in TGMF test are also proposed. The vertical cracks are preferentially created, and then the vertical and horizontal cracks will be propagated when the vertical cracks are impeded by pores and micro-cracks.Item Experimental and Modeling Studies of Bond Coat Species Effect on Microstructure Evolution in EB-PVD Thermal Barrier Coatings in Cyclic Thermal Environments(MDPI, 2019) Lu, Zhe; Lyu, Guanlin; Gulhane, Abhilash; Park, Hyeon-Myeong; Kim, Jun Seong; Jung, Yeon-Gil; Zhang, Jing; Mechanical and Energy Engineering, School of Engineering and TechnologyIn this work, the effects of bond coat species on the thermal barrier coating (TBC) microstructure are investigated under thermal cyclic conditions. The TBC samples are prepared by electron beam-physical vapor deposition with two species of bond coats prepared by either air-plasma spray (APS) or high-velocity oxygen fuel (HVOF) methods. The TBC samples are evaluated in a variety of thermal cyclic conditions, including flame thermal fatigue (FTF), cyclic furnace thermal fatigue (CFTF), and thermal shock (TS) tests. In FTF test, the interface microstructures of TBC samples show a sound condition without any delamination or cracking. In CFTF and TS tests, the TBCs with the HVOF bond coat demonstrate better thermal durability than that by APS. In parallel with the experiments, a finite element (FE) model is developed. Using a transient thermal analysis, the high-temperature creep-fatigue behavior of the TBC samples is simulated similar to the conditions used in CFTF test. The FE simulation predicts a lower equivalent stress at the interface between the top coat and bond coat in bond coat prepared using HVOF compared with APS, suggesting a longer cyclic life of the coating with the HVOF bond coat, which is consistent with the experimental observation.Item Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings(Springer, 2018-04) Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing; Engineering Technology, School of Engineering and TechnologyLanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.