ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Parada, Luis F."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial
    (Elsevier, 2012-12) Robertson, Kent A.; Nalepa, Grzegorz; Yang, Feng-Chun; Bowers, Daniel C.; Ho, Chang Y.; Hutchins, Gary D.; Croop, James M.; Vik, Terry A.; Denne, Scott C.; Parada, Luis F.; Hingtgen, Cynthia M.; Walsh, Laurence E.; Yu, Menggang; Pradhan, Kamnesh R.; Edwards-Brown, Mary K.; Cohen, Mervyn D.; Fletcher, James W.; Travers, Jeffrey B.; Staser, Karl W.; Lee, Melissa W.; Sherman, Marcie R.; Davis, Cynthia J.; Miller, Lucy C.; Ingram, David A.; Clapp, D. Wade; Pediatrics, School of Medicine
    BACKGROUND: Plexiform neurofibromas are slow-growing chemoradiotherapy-resistant tumours arising in patients with neurofibromatosis type 1 (NF1). Currently, there are no viable therapeutic options for patients with plexiform neurofibromas that cannot be surgically removed because of their proximity to vital body structures. We undertook an open-label phase 2 trial to test whether treatment with imatinib mesylate can decrease the volume burden of clinically significant plexiform neurofibromas in patients with NF1. METHODS: Eligible patients had to be aged 3-65 years, and to have NF1 and a clinically significant plexiform neurofibroma. Patients were treated with daily oral imatinib mesylate at 220 mg/m(2) twice a day for children and 400 mg twice a day for adults for 6 months. The primary endpoint was a 20% or more reduction in plexiform size by sequential volumetric MRI imaging. Clinical data were analysed on an intention-to-treat basis; a secondary analysis was also done for those patients able to take imatinib mesylate for 6 months. This trial is registered with ClinicalTrials.gov, number NCT01673009. FINDINGS: Six of 36 patients (17%, 95% CI 6-33), enrolled on an intention-to-treat basis, had an objective response to imatinib mesylate, with a 20% or more decrease in tumour volume. Of the 23 patients who received imatinib mesylate for at least 6 months, six (26%, 95% CI 10-48) had a 20% or more decrease in volume of one or more plexiform tumours. The most common adverse events were skin rash (five patients) and oedema with weight gain (six). More serious adverse events included reversible grade 3 neutropenia (two), grade 4 hyperglycaemia (one), and grade 4 increases in aminotransferase concentrations (one). INTERPRETATION: Imatinib mesylate could be used to treat plexiform neurofibromas in patients with NF1. A multi-institutional clinical trial is warranted to confirm these results.
  • Loading...
    Thumbnail Image
    Item
    The tumor suppressor CDKN3 controls mitosis
    (Rockefeller University Press, 2013) Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R.; Lehmann, Amalia S.; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F.; Clapp, Wade; Pediatrics, School of Medicine
    Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University