- Browse by Author
Browsing by Author "Pandya, Pankita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Obesity as a Potential Risk Factor for Vincristine Induced Peripheral Neuropathy(Wolters Kluwer, 2020-10) Sajdyk, Tammy J.; Boyle, Frances A.; Foran, Kaitlin S.; Tong, Yan; Pandya, Pankita; Smith, Ellen M.L.; Ho, Richard H.; Wells, Elizabeth; Renbarger, Jamie L.; Pediatrics, School of MedicineAcute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Vincristine is a core chemotherapeutic agent for patients with ALL; unfortunately, approximately 78% will develop vincristine-induced peripheral neuropathy (VIPN). VIPN can result in vincristine dose reductions that decrease therapeutic efficacy: making it important to understand which children are at highest risk for VIPN. We hypothesized that pediatric ALL patients who were obese at diagnosis would develop worse VIPN than healthy weight children with ALL within the first year. Our results confirmed that obese pediatric patients have significantly (p=0.03) worse VIPN than patients of healthy weight.Item Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation(The American Association of Immunologists, Inc., 2013-10-15) Suzuki, Hidemi; Lasbury, Mark E.; Fan, Lin; Vittal, Ragini; Mickler, Elizabeth A.; Benson, Heather L.; Shilling, Rebecca; Wu, Qiang; Weber, Daniel J.; Wagner, Sarah R.; Lasaro, Melissa; Devore, Denise; Wang, Yi; Sandusky, George E.; Lipking, Kelsey; Pandya, Pankita; Reynolds, John; Love, Robert; Wozniak, Thomas; Gu, Hongmei; Brown, Krista M.; Wilkes, David S.; Department of Medicine, School of Medicine,Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB.