- Browse by Author
Browsing by Author "Pandey, Ritika"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Redditors in Recovery: Text Mining Reddit to Investigate Transitions into Drug Addiction(IEEE, 2018-12) Lu, John; Sridhar, Sumati; Pandey, Ritika; Al Hasan, Mohammad; Mohler, George; Computer and Information Science, School of ScienceIncreasing rates of opioid drug abuse and heightened prevalence of online support communities underscore the necessity of employing data mining techniques to better understand drug addiction using these rapidly developing online resources. In this work, we obtain data from Reddit, an online collection of forums, to gather insight into drug use/misuse using text data from users themselves. Specifically, using user posts, we trained 1) a binary classifier which predicts transitions from casual drug discussion forums to drug recovery forums and 2) a Cox regression model that outputs likelihoods of such transitions. In doing so, we found that utterances of select drugs and certain linguistic features contained in one's posts can help predict these transitions. Using unfiltered drug-related posts, our research delineates drugs that are associated with higher rates of transitions from recreational drug discussion to support/recovery discussion, offers insight into modern drug culture, and provides tools with potential applications in combating the opioid crisis.Item Rewiring Police Officer Training Networks to Reduce Forecasted Use of Force(2023-08) Pandey, Ritika; Mohler, George; Hill, James; Hasan, Mohammad Al; Mukhopadhyay, SnehasisPolice use of force has become a topic of significant concern, particularly given the disparate impact on communities of color. Research has shown that police officer involved shootings, misconduct and excessive use of force complaints exhibit network effects, where officers are at greater risk of being involved in these incidents when they socialize with officers who have a history of use of force and misconduct. Given that use of force and misconduct behavior appear to be transmissible across police networks, we are attempting to address if police networks can be altered to reduce use of force and misconduct events in a limited scope. In this work, we analyze a novel dataset from the Indianapolis Metropolitan Police Department on officer field training, subsequent use of force, and the role of network effects from field training officers. We construct a network survival model for analyzing time-to-event of use of force incidents involving new police trainees. The model includes network effects of the diffusion of risk from field training officers (FTOs) to trainees. We then introduce a network rewiring algorithm to maximize the expected time to use of force events upon completion of field training. We study several versions of the algorithm, including constraints that encourage demographic diversity of FTOs. The results show that FTO use of force history is the best predictor of trainee's time to use of force in the survival model and rewiring the network can increase the expected time (in days) of a recruit's first use of force incident by 8%. We then discuss the potential benefits and challenges associated with implementing such an algorithm in practice.Item Rewiring Police Officer Training Networks to Reduce Forecasted Use of Force(ACM, 2023) Pandey, Ritika; Carter, Jeremy; Hill, James; Mohler, George; School of Public and Environmental AffairsResearch has shown that police officer involved shootings, misconduct and excessive use of force complaints exhibit network effects, where officers are at greater risk of being involved in these incidents when they socialize with officers who have a history of use of force and misconduct. In this work, we first construct a network survival model for the time-to-event of use of force incidents involving new police trainees. The model includes network effects of the diffusion of risk from field training officer (FTO) to trainee. We then introduce a network rewiring algorithm to maximize the expected time to use of force events upon completion of field training. We study several versions of the algorithm, including constraints that encourage demographic diversity of FTOs. Using data from Indianapolis, we show that rewiring the network can increase the expected time (in days) of a recruit's first use of force incident by 8%. We then discuss the potential benefits and challenges associated with implementing such an algorithm in practice.Item Text Mining for Social Harm and Criminal Justice Applications(2020-08) Pandey, Ritika; Mohler, George; Hasan, Mohammad Al; Mukhopadhyay, SnehasisIncreasing rates of social harm events and plethora of text data demands the need of employing text mining techniques not only to better understand their causes but also to develop optimal prevention strategies. In this work, we study three social harm issues: crime topic models, transitions into drug addiction and homicide investigation chronologies. Topic modeling for the categorization and analysis of crime report text allows for more nuanced categories of crime compared to official UCR categorizations. This study has important implications in hotspot policing. We investigate the extent to which topic models that improve coherence lead to higher levels of crime concentration. We further explore the transitions into drug addiction using Reddit data. We proposed a prediction model to classify the users’ transition from casual drug discussion forum to recovery drug discussion forum and the likelihood of such transitions. Through this study we offer insights into modern drug culture and provide tools with potential applications in combating opioid crises. Lastly, we present a knowledge graph based framework for homicide investigation chronologies that may aid investigators in analyzing homicide case data and also allow for post hoc analysis of key features that determine whether a homicide is ultimately solved. For this purpose we perform named entity recognition to determine witnesses, detectives and suspects from chronology, use keyword expansion to identify various evidence types and finally link these entities and evidence to construct a homicide investigation knowledge graph. We compare the performance over several choice of methodologies for these sub-tasks and analyze the association between network statistics of knowledge graph and homicide solvability.