- Browse by Author
Browsing by Author "Panariello, Beatriz"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Curcumin-loaded Photoactivatable Polymeric Nanoparticle on peri-implantitis-related biofilm(2022) Tonon, Caroline Coradi; Panariello, Beatriz; Chorilli, Marlus; Spolidorio, Denise Madalena Palomari; Duarte, Simone; Biomedical and Applied Sciences, School of DentistryCurcumin has been used as a photosensitizer (PS) for antimicrobial photodynamic chemotherapy (PACT). However, its low solubility, instability and poor bioavailability are a challenge for its in vivo application. This study aimed to synthesize curcumin-loaded polymeric nanoparticles (curcumin-NP) and to determine their antimicrobial and cytotoxic effects. Nanoparticles (NP) were synthesized by the nanoprecipitation method using polyprolactone as a polymer. Curcumin-NP was characterized by particle size, polydispersity index and zeta potential, scanning electron microscopy and curcumin encapsulation efficiency (EE). Curcumin-NP was compared to free curcumin solubilized in 10% DMSO as photosensitizers for PACT in single and multi-species Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus oralis biofilms. Chlorhexidine 0.12% (CHX) and ultrapure water were used as positive and negative controls, respectively. The cytotoxic effect of curcumin-NP was evaluated on human periodontal ligament fibroblast cells (HPLF). Data were analyzed by ANOVA (α=0.05). Curcumin-NP exhibited homogeneity and stability in solution, small particle size and 67.5% EE of curcumin. Curcumin-NP presented antibiofilm activity at 500 µg/ml when photoactivated. Curcumin-NP and curcumin with and without photoactivation were not cytotoxic to HPLF cells. Curcumin-NP has antimicrobial and antibiofilm properties, with better effects when associated with blue-light, being a promising therapy for preventing and treating peri-implant diseases.Item Impact of curcumin loading on the physicochemical, mechanical and antimicrobial properties of a methacrylate-based experimental dental resin(Springer Nature, 2022-11-04) Comeau, Patricia; Panariello, Beatriz; Duarte, Simone; Manso, Adriana; Cariology, Operative Dentistry and Dental Public Health, School of DentistryOral biofilms are directly linked to one of the most common chronic human diseases, dental caries. Resin-based dental materials have significant potential to replace amalgam, however they lack sufficient antimicrobial power. This innovative study investigates a curcumin-loaded dental resin which can be utilized in an antimicrobial photodynamic therapy (aPDT) approach. The study evaluated the effects of curcumin loading on resin physicochemical, mechanical, and adhesive properties, as well as the antimicrobial response associated with blue light activation. Preliminary tests involving degree of conversion (DC) and sample integrity determined the optimal loading of curcumin to be restricted to 0.05 and 0.10 wt%. These optimal loadings were tested for flexural strength (FS), water sorption (WS) and solubility (SL), shear bond strength to dentin (SBS), and viability of Streptococcus mutans under 14.6 J/cm2 blue light or dark conditions, in 6 h and 24 h biofilms. The results demonstrated that 0.10 wt% curcumin had minimal impact on either FS or SBS, but detectably increased WS and SL. A 2 log10 (CFU/mL) reduction in S. mutans after light application in both 6 h and 24 h biofilms were corroborated by CLSM imaging and highlighted the significant potential of this novel aPDT approach with resin-based dental materials.