- Browse by Author
Browsing by Author "Pan, Yanling"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A-type FHFs mediate resurgent currents through TTX-resistant voltage-gated sodium channels(eLife Sciences, 2022-04-20) Xiao, Yucheng; Theile, Jonathan W.; Zybura, Agnes; Pan, Yanling; Lin, Zhixin; Cummins, Theodore R.; Biology, School of ScienceResurgent currents (INaR) produced by voltage-gated sodium channels are required for many neurons to maintain high-frequency firing and contribute to neuronal hyperexcitability and disease pathophysiology. Here, we show, for the first time, that INaR can be reconstituted in a heterologous system by coexpression of sodium channel α-subunits and A-type fibroblast growth factor homologous factors (FHFs). Specifically, A-type FHFs induces INaR from Nav1.8, Nav1.9 tetrodotoxin (TTX)-resistant neuronal channels, and, to a lesser extent, neuronal Nav1.7 and cardiac Nav1.5 channels. Moreover, we identified the N-terminus of FHF as the critical molecule responsible for A-type FHFs-mediated INaR. Among the FHFs, FHF4A is the most important isoform for mediating Nav1.8 and Nav1.9 INaR. In nociceptive sensory neurons, FHF4A knockdown significantly reduces INaR amplitude and the percentage of neurons that generate INaR, substantially suppressing excitability. Thus, our work reveals a novel molecular mechanism underlying TTX-resistant INaR generation and provides important potential targets for pain treatment.Item Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells(Elsevier, 2022) Gomes, Cátia; VanderWall, Kirstin B.; Pan, Yanling; Lu, Xiaoyu; Lavekar, Sailee S.; Huang, Kang-Chieh; Fligor, Clarisse M.; Harkin, Jade; Zhang, Chi; Cummins, Theodore R.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineAlthough the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.Item Distinct functional alterations in SCN8A epilepsy mutant channels(The Physiological Society, 2020-01) Pan, Yanling; Cummins, Theodore R.; Biology, School of ScienceSCN8A is a novel causal gene for early infantile epileptic encephalopathy. It is well accepted that gain-of-function mutations in SCN8A underlie the disorder, but the remarkable heterogeneity of its clinical presentation and poor treatment response demand for better understanding of the disease mechanisms. Here, we characterize a new epilepsy-related SCN8A mutation, R850Q, in human Nav1.6. We show that it is a gain-of-function mutation, with a hyperpolarizing shift in voltage dependence of activation, a 2-fold increase of persistent current and a slowed decay of resurgent current. We systematically compare its biophysics with three other SCN8A epilepsy mutations, T767I, R1617Q and R1872Q, in the human Nav1.6 channel. Although all of these mutations are gain-of-function, the mutations affect different aspects of channel properties. One commonality we discovered is an alteration of resurgent current kinetics, but the mechanisms by which resurgent currents are augmented is not yet clear for all of the mutations. Computational simulations predict increased excitability of neurons carrying these mutations with differential enhancement by open channel block.Item Retinal Ganglion Cells With a Glaucoma OPTN(E50K) Mutation Exhibit Neurodegenerative Phenotypes when Derived from Three-Dimensional Retinal Organoids(Elsevier, 2020-07-14) VanderWall, Kirstin B.; Huang, Kang-Chieh; Pan, Yanling; Lavekar, Sailee S.; Fligor, Clarisse M.; Allsop, Anna R.; Lentsch, Kelly A.; Dang, Pengtao; Zhang, Chi; Tseng, Henry C.; Cummins, Theodore R.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineRetinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.Item S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability(Elsevier, 2020-05) Pan, Yanling; Xiao, Yucheng; Pei, Zifan; Cummins, Theodore R.; Biology, School of ScienceS-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.Item Voltage-Gated Sodium Channel Nav1.6 S-Palmitoylation Regulates Channel Functions and Neuronal Excitability(2020-04) Pan, Yanling; Meyer, Jason S.; Cummins, Theodore R.; Hudmon, Andy; Jin, Xiaoming; Obukhov, Alexander G.The voltage-gated sodium channels (VGSCs) are critical determinants of neuronal excitability. They set the threshold for action potential generation. The VGSC isoform Nav1.6 participates in various physiological processes and contributes to distinct pathological conditions, but how Nav1.6 function is differentially regulated in different cell types and subcellular locations is not clearly understood. Some VGSC isoforms are subject to S-palmitoylation and exhibit altered functional properties in different S-palmitoylation states. This dissertation investigates the role of S-palmitoylation in Nav1.6 regulation and explores the consequences of S-palmitoylation in modulating neuronal excitability in physiological and pathological conditions. The aims of this dissertation were to 1) provide biochemical and electrophysiological evidence of Nav1.6 regulation by S-palmitoylation and identify specific S-palmitoylation sites in Nav1.6 that are important for excitability modulation, 2) determine the biophysical consequences of epilepsy-associated mutations in Nav1.6 and employ computational models for excitability prediction and 3) test the modulating effects of S-palmitoylation on aberrant Nav1.6 activity incurred by epilepsy mutations. To address these aims, an acyl-biotin exchange assay was used for Spalmitoylation detection and whole-cell electrophysiology was used for channel characterization and excitability examination. The results demonstrate that 1) Nav1.6 is biochemically modified and functionally regulated by S-palmitoylation in an isoform- and site-specific manner and altered S-palmitoylation status of the channel results in substantial changes of neuronal excitability, 2) epilepsy associated Nav1.6 mutations affect different aspects of channel function, but may all converge to gain-of-function alterations with enhanced resurgent currents and increased neuronal excitability and 3) S-palmitoylation can target specific Nav1.6 properties and could possibly be used to rescue abnormal channel function in diseased conditions. Overall, this dissertation reveals S-palmitoylation as a new mechanism for Nav1.6 regulation. This knowledge is critical for understanding the potential role of S-palmitoylation in isoform-specific regulation for VGSCs and providing potential targets for the modulation of excitability disorders.Item Whole exome sequencing and co-expression analysis identify an SCN1A variant that modifies pathogenicity in a family with Genetic Epilepsy and Febrile Seizures Plus (GEFS+)(Wiley, 2022) Hammer, Michael F.; Pan, Yanling; Cumbay, Medhane; Pendziwiat, Manuela; Afawi, Zaid; Goldberg-Stern, Hadassah; Johnstone, Laurel; Helbig, Ingo; Cummins, Theodore R.; Biology, School of ScienceObjective Family members carrying the same SCN1A variant often exhibit differences in the clinical severity of epilepsy. This variable expressivity suggests that other factors aside from the primary sodium channel variant influence the clinical manifestation. However, identifying such factors has proven challenging in humans. Methods We perform whole exome sequencing in a large family in which an SCN1A variant (p.K1372E) is segregating that is associated with a broad spectrum of phenotypes ranging from lack of epilepsy, to febrile seizures and absence seizures, to Dravet Syndrome. We assessed the hypothesis that the severity of SCN1A-related phenotype was affected by alternate alleles at a modifier locus (or loci). Results One of our top candidates identified by WES was a second variant in the SCN1A gene (p.L375S) that was exclusively shared by unaffected carriers of K1372E allele. To test the hypothesized that L375S nullifies the loss-of-function effect of K1372E, we transiently expressed Nav1.1 carrying the two variants in HEK293T cells and compared their biophysical properties with the wild-type (WT) variant, and then co-expressed WT with K1372E or L375S with K1372E in equal quantity and tested the functional consequence. The data demonstrated that co-expression of the L375S and K1372E alleles reversed the loss-of-function property brought by the K1372E variant, while WT-K1372E co-expression remained partial loss-of-function. Significance These results support the hypothesis that L375S counteracts the loss-of-function effect of K1372E such that individuals carrying both alleles in trans do not present epilepsy-related symptoms. We demonstrate that monogenic epilepsies with wide expressivity can be modified by additional variants in the disease gene, providing a novel framework for gene-phenotype relationship in genetic epilepsies.