- Browse by Author
Browsing by Author "Pan, Ning"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Divergent trends of ecosystem-scale photosynthetic efficiency between arid and humid lands across the globe(Wiley, 2022-09) Wei, Fangli; Wang, Shuai; Fu, Bojie; Wang, Lanhui; Zhang, Wenmin; Wang, Lixin; Pan, Ning; Fansholt, Rasmus; Earth and Environmental Sciences, School of ScienceAim Widespread greening and an increasing global terrestrial carbon sink over recent decades have been reported. However, the spatio-temporal relationships between vegetation greenness and productivity and the factors influencing this relationship remain unclear. We define a new metric of ecosystem-scale photosynthetic efficiency (EPE) to analyse its spatio-temporal pattern and investigate how potential drivers regulate the greenness–productivity relationship. Location Global. Time period From 2001 to 2016. Major taxa studied Global terrestrial ecosystems. Methods This study used global datasets of leaf area index (LAI) and solar-induced fluorescence (SIF) as proxies of vegetation greenness and ecosystem productivity, respectively, to propose a new metric of SIF/LAI, representing ecosystem-scale photosynthetic efficiency (EPE). We identified the spatial pattern and dynamics of EPE and examined factors influencing EPE. Results The results showed a weaker increase in productivity compared with the global greening rate from 2001 to 2016, suggesting a decline in EPE at the global scale. This decline in EPE indicates a disproportionate increase in terrestrial productivity against the widespread greening. When stratified into areas following an aridity gradient, we found that EPE overall showed upward trends in arid and semi-arid areas, and downward trends in dry sub-humid and humid regions. The EPE was controlled primarily by soil moisture, which promoted or constrained the EPE in xeric and mesic ecosystems, respectively. Moreover, the increase in short vegetation cover and atmospheric water demand contributed positively or negatively to EPE changes in xeric and mesic ecosystems, respectively. Main conclusions Our study shows that greening of the Earth is associated with decreasing EPE, revealing that current rates of carbon sequestration do not increase proportionally to greening of the Earth and highlighting that soil moisture is a key controller of EPE. These results help to reduce the uncertainties in future climate change impacts on vegetation dynamics, thus having implications for sustainable ecosystem management and climate change mitigation.Item Enhanced coupling of light use efficiency and water use efficiency in arid and semi-arid environments(Wiley, 2021) Gao, Dexin; Wang, Shuai; Wang, Lixin; Li, Zidong; Pan, Ning; Liu, Yanxu; Fu, Bojie; Earth Sciences, School of ScienceBoth light use efficiency (LUE) and water use efficiency (WUE) play essential roles in ecosystem production. The extent to which ecosystem production is affected by the coupling between LUE and WUE remains unclear. In this study, we used data from flux measurements and weather stations in the Heihe River Basin, China, along a strong climatic gradient to quantify the relationship between LUE and WUE. Variations of LUE explained up to 85% of the variations of WUE. The contribution of LUE to WUE increased with increasing water stress. Pearson’s correlation coefficient between LUE and WUE increased from −0.12 to +0.63 with decreasing LUE. The coordination between LUE and WUE was essential to explaining the insensitive of WUE and GPP with increasing water stress. These results suggest that ecosystems enhance the coordination between light and water use when water stress is high. They enhance our understanding of the drought resilience of ecosystems and reduce uncertainties associated with the carbon cycle in drylands.