- Browse by Author
Browsing by Author "Palanisamy Sundar, Agnideven"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Investigation of Backdoor Attacks and Design of Effective Countermeasures in Federated Learning(2024-08) Palanisamy Sundar, Agnideven; Zou, Xukai; Li, Feng; Luo, Xiao; Hu, Qin; Tuceryan, MihranFederated Learning (FL), a novel subclass of Artificial Intelligence, decentralizes the learning process by enabling participants to benefit from a comprehensive model trained on a broader dataset without direct sharing of private data. This approach integrates multiple local models into a global model, mitigating the need for large individual datasets. However, the decentralized nature of FL increases its vulnerability to adversarial attacks. These include backdoor attacks, which subtly alter classification in some categories, and byzantine attacks, aimed at degrading the overall model accuracy. Detecting and defending against such attacks is challenging, as adversaries can participate in the system, masquerading as benign contributors. This thesis provides an extensive analysis of the various security attacks, highlighting the distinct elements of each and the inherent vulnerabilities of FL that facilitate these attacks. The focus is primarily on backdoor attacks, which are stealthier and more difficult to detect compared to byzantine attacks. We explore defense strategies effective in identifying malicious participants or mitigating attack impacts on the global model. The primary aim of this research is to evaluate the effectiveness and limitations of existing server-level defenses and to develop innovative defense mechanisms under diverse threat models. This includes scenarios where the server collaborates with clients to thwart attacks, cases where the server remains passive but benign, and situations where no server is present, requiring clients to independently minimize and isolate attacks while enhancing main task performance. Throughout, we ensure that the interventions do not compromise the performance of both global and local models. The research predominantly utilizes 2D and 3D datasets to underscore the practical implications and effectiveness of proposed methodologies.Item Learning-based Attack and Defense on Recommender Systems(2021-08) Palanisamy Sundar, Agnideven; Zou, Xukai; Li, Feng; Hu, QinThe internet is the home for massive volumes of valuable data constantly being created, making it difficult for users to find information relevant to them. In recent times, online users have been relying on the recommendations made by websites to narrow down the options. Online reviews have also become an increasingly important factor in the final choice of a customer. Unfortunately, attackers have found ways to manipulate both reviews and recommendations to mislead users. A Recommendation System is a special type of information filtering system adapted by online vendors to provide suggestions to their customers based on their requirements. Collaborative filtering is one of the most widely used recommendation systems; unfortunately, it is prone to shilling/profile injection attacks. Such attacks alter the recommendation process to promote or demote a particular product. On the other hand, many spammers write deceptive reviews to change the credibility of a product/service. This work aims to address these issues by treating the review manipulation and shilling attack scenarios independently. For the shilling attacks, we build an efficient Reinforcement Learning-based shilling attack method. This method reduces the uncertainty associated with the item selection process and finds the most optimal items to enhance attack reach while treating the recommender system as a black box. Such practical online attacks open new avenues for research in building more robust recommender systems. When it comes to review manipulations, we introduce a method to use a deep structure embedding approach that preserves highly nonlinear structural information and the dynamic aspects of user reviews to identify and cluster the spam users. It is worth mentioning that, in the experiment with real datasets, our method captures about 92\% of all spam reviewers using an unsupervised learning approach.Item Multi-Armed-Bandit-based Shilling Attack on Collaborative Filtering Recommender Systems(IEEE, 2020-12) Palanisamy Sundar, Agnideven; Li, Feng; Zou, Xukai; Hu, Qin; Gao, Tianchong; Computer and Information Science, School of ScienceCollaborative Filtering (CF) is a popular recommendation system that makes recommendations based on similar users' preferences. Though it is widely used, CF is prone to Shilling/Profile Injection attacks, where fake profiles are injected into the CF system to alter its outcome. Most of the existing shilling attacks do not work on online systems and cannot be efficiently implemented in real-world applications. In this paper, we introduce an efficient Multi-Armed-Bandit-based reinforcement learning method to practically execute online shilling attacks. Our method works by reducing the uncertainty associated with the item selection process and finds the most optimal items to enhance attack reach. Such practical online attacks open new avenues for research in building more robust recommender systems. We treat the recommender system as a black box, making our method effective irrespective of the type of CF used. Finally, we also experimentally test our approach against popular state-of-the-art shilling attacks.Item Understanding Shilling Attacks and Their Detection Traits: A Comprehensive Survey(IEEE, 2020-09) Palanisamy Sundar, Agnideven; Li, Feng; Zou, Xukai; Gao, Tianchong; Russomanno, Evan D.; Computer and Information Science, School of ScienceThe internet is the home for huge volumes of useful data that is constantly being created making it difficult for users to find information relevant to them. Recommendation System is a special type of information filtering system adapted by online vendors to provide recommendations to their customers based on their requirements. Collaborative filtering is one of the most widely used recommendation systems; unfortunately, it is prone to shilling/profile injection attacks. Such attacks alter the recommendation process to promote or demote a particular product. Over the years, multiple attack models and detection techniques have been developed to mitigate the problem. This paper aims to be a comprehensive survey of the shilling attack models, detection attributes, and detection algorithms. Additionally, we unravel and classify the intrinsic traits of the injected profiles that are exploited by the detection algorithms, which has not been explored in previous works. We also briefly discuss recent works in the development of robust algorithms that alleviate the impact of shilling attacks, attacks on multi-criteria systems, and intrinsic feedback based collaborative filtering methods.