- Browse by Author
Browsing by Author "Pal, Gian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genetic Testing in Parkinson's Disease(Wiley, 2023) Pal, Gian; Cook, Lola; Schulze, Jeanine; Verbrugge, Jennifer; Alcalay, Roy N.; Merello, Marcelo; Sue, Carolyn M.; Bardien, Soraya; Bonifati, Vincenzo; Chung, Sun Ju; Foroud, Tatiana; Gatto, Emilia; Hall, Anne; Hattori, Nobutaka; Lynch, Tim; Marder, Karen; Mascalzoni, Deborah; Novaković, Ivana; Thaler, Avner; Raymond, Deborah; Salari, Mehri; Shalash, Ali; Suchowersky, Oksana; Mencacci, Niccolò E.; Simuni, Tanya; Saunders-Pullman, Rachel; Klein, Christine; Medical and Molecular Genetics, School of MedicineGenetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines.Item International Genetic Testing and Counseling Practices for Parkinson's Disease(Wiley, 2023) Saunders-Pullman, Rachel; Raymond, Deborah; Ortega, Roberto A.; Shalash, Ali; Gatto, Emilia; Salari, Mehri; Markgraf, Maggie; Alcalay, Roy N.; Mascalzoni, Deborah; Mencacci, Niccolò E.; Bonifati, Vincenzo; Merello, Marcelo; Chung, Sun Ju; Novakovic, Ivana; Bardien, Soraya; Pal, Gian; Hall, Anne; Hattori, Nobutaka; Lynch, Timothy; Thaler, Avner; Sue, Carolyn M.; Foroud, Tatiana; Verbrugge, Jennifer; Schulze, Jeanine; Cook, Lola; Marder, Karen; Suchowersky, Oksana; Klein, Christine; Simuni, Tatyana; Medical and Molecular Genetics, School of MedicineBackground: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. Objectives: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. Methods: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. Results: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. Conclusions: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.Item Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study(Oxford University Press, 2024) Westenberger, Ana; Skrahina, Volha; Usnich, Tatiana; Beetz, Christian; Vollstedt, Eva-Juliane; Laabs, Björn-Hergen; Paul, Jefri J.; Curado, Filipa; Skobalj, Snezana; Gaber, Hanaa; Olmedillas, Maria; Bogdanovic, Xenia; Ameziane, Najim; Schell, Nathalie; Aasly, Jan Olav; Afshari, Mitra; Agarwal, Pinky; Aldred, Jason; Alonso-Frech, Fernando; Anderson, Roderick; Araújo, Rui; Arkadir, David; Avenali, Micol; Balal, Mehmet; Benizri, Sandra; Bette, Sagari; Bhatia, Perminder; Bonello, Michael; Braga-Neto, Pedro; Brauneis, Sarah; Costa Cardoso, Francisco Eduardo; Cavallieri, Francesco; Classen, Joseph; Cohen, Lisa; Coletta, Della; Crosiers, David; Cullufi, Paskal; Dashtipour, Khashayar; Demirkiran, Meltem; de Carvalho Aguiar, Patricia; De Rosa, Anna; Djaldetti, Ruth; Dogu, Okan; Dos Santos Ghilardi, Maria Gabriela; Eggers, Carsten; Elibol, Bulent; Ellenbogen, Aaron; Ertan, Sibel; Fabiani, Giorgio; Falkenburger, Björn H.; Farrow, Simon; Fay-Karmon, Tsviya; Ferencz, Gerald J.; Fonoff, Erich Talamoni; Fragoso, Yara Dadalti; Genç, Gençer; Gorospe, Arantza; Grandas, Francisco; Gruber, Doreen; Gudesblatt, Mark; Gurevich, Tanya; Hagenah, Johann; Hanagasi, Hasmet A.; Hassin-Baer, Sharon; Hauser, Robert A.; Hernández-Vara, Jorge; Herting, Birgit; Hinson, Vanessa K.; Hogg, Elliot; Hu, Michele T.; Hummelgen, Eduardo; Hussey, Kelly; Infante, Jon; Isaacson, Stuart H.; Jauma, Serge; Koleva-Alazeh, Natalia; Kuhlenbäumer, Gregor; Kühn, Andrea; Litvan, Irene; López-Manzanares, Lydia; Luxmore, McKenzie; Manandhar, Sujeena; Marcaud, Veronique; Markopoulou, Katerina; Marras, Connie; McKenzie, Mark; Matarazzo, Michele; Merello, Marcelo; Mollenhauer, Brit; Morgan, John C.; Mullin, Stephen; Musacchio, Thomas; Myers, Bennett; Negrotti, Anna; Nieves, Anette; Nitsan, Zeev; Oskooilar, Nader; Öztop-Çakmak, Özgür; Pal, Gian; Pavese, Nicola; Percesepe, Antonio; Piccoli, Tommaso; Pinto de Souza, Carolina; Prell, Tino; Pulera, Mark; Raw, Jason; Reetz, Kathrin; Reiner, Johnathan; Rosenberg, David; Ruiz-Lopez, Marta; Ruiz Martinez, Javier; Sammler, Esther; Santos-Lobato, Bruno Lopes; Saunders-Pullman, Rachel; Schlesinger, Ilana; Schofield, Christine M.; Schumacher-Schuh, Artur F.; Scott, Burton; Sesar, Ángel; Shafer, Stuart J.; Sheridan, Ray; Silverdale, Monty; Sophia, Rani; Spitz, Mariana; Stathis, Pantelis; Stocchi, Fabrizio; Tagliati, Michele; Tai, Yen F.; Terwecoren, Annelies; Thonke, Sven; Tönges, Lars; Toschi, Giulia; Tumas, Vitor; Urban, Peter Paul; Vacca, Laura; Vandenberghe, Wim; Valente, Enza Maria; Valzania, Franco; Vela-Desojo, Lydia; Weill, Caroline; Weise, David; Wojcieszek, Joanne; Wolz, Martin; Yahalom, Gilad; Yalcin-Cakmakli, Gul; Zittel, Simone; Zlotnik, Yair; Kandaswamy, Krishna K.; Balck, Alexander; Hanssen, Henrike; Borsche, Max; Lange, Lara M.; Csoti, Ilona; Lohmann, Katja; Kasten, Meike; Brüggemann, Norbert; Rolfs, Arndt; Klein, Christine; Bauer, Peter; Neurology, School of MedicineEstimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.