- Browse by Author
Browsing by Author "Ozair, Ahmad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparison of Blister Aneurysm Treatment Techniques: A Systematic Review and Meta-Analysis(Elsevier, 2021-10) Sanchez, Victoria E.; Haider, Ali S.; Rowe, Scott E.; Wahood, Waseem; Sagoo, Navraj S.; Ozair, Ahmad; El Ahmadieh, Tarek Y.; Kan, Peter; Johnson, Jeremiah N.; Neurological Surgery, School of MedicineObjective Blood blister aneurysms are small, thin-walled, rapidly growing side-wall aneurysms that have proven particularly difficult to treat, and evidence-based guidance for treatment strategies is lacking. A systematic review and meta-analysis was performed to aggregate the available data and compare the three primary treatment modalities. Methods We performed a comprehensive literature search according to PRISMA guidelines followed by an indirect meta-analysis that compares the safety and efficacy of surgical, flow-diverting stents (FDS), and other endovascular approaches for the treatment of ruptured blood blister aneurysms. Results A total of 102 studies were included for quantitative synthesis with sample sizes of 687 treated surgically, 704 treated endovascularly without FDS, and 125 treated via flow-diversion. Comparatively, FDS achieved significantly reduced rates of perioperative retreatment compared to both surgical (P=0.025) and non-FDS endovascular (P<0.001). The FDS subgroup also achieved a significantly lower incidence of perioperative rebleed (P<0.001), perioperative hydrocephalus (P=0.012), postoperative infarction (P=0.002), postoperative hydrocephalus (P<0.001), and postoperative vasospasm (P=0.002) when compared to those patients in the open surgical subgroup. While no significant differences were found between groups on the basis of functional outcomes, angiographic outcomes detailed by rates of radiographic complete occlusion were highest for surgical (90.7%, 262/289) and FDS (89.1%, 98/110) subgroups versus the non-FDS endovascular subgroup at (82.7%, 268/324). Conclusion Flow-diversion appears to be an effective treatment strategy for ruptured BBAs with lower rates of perioperative complications when compared to surgical and other endovascular techniques but studies investigating long-term outcomes following flow-diversion warrant further study.Item Program Signaling and Geographic Preferences in the United States Residency Match for Neurosurgery(Springer Nature, 2024-09-20) Ozair, Ahmad; Hanson, Jacob T.; Detchou, Donald K.; Blackwell, Matthew P.; Jenkins, Abigail; Tissot, Marianne I.; Barrie, Umaru; McDermott, Michael W.; Neurological Surgery, School of MedicinePostgraduate residency training has long been the cornerstone of academic medicine in the United States. The Electronic Residency Application Service (ERAS), managed by the Association of American Medical Colleges (AAMC), is the central residency application platform in the United States for most clinical specialties, with the National Residency Matching Program (NRMP) being the algorithm for matching residency programs with applicants. However, the determination of the best fit between ERAS applicants and programs has been increasingly challenged by the rising number of applicants per residency spot. This application overburdening across competitive specialties led to several adverse downstream effects, which affected all stakeholders. While several changes and proposals were made to rectify the issue of application overburdening, the 2020-2021 ERAS Match Cycle finally saw several competitive specialties, including otolaryngology and urology, utilize a new system of supplemental residency application based on preference signals/tokens. These tokens permit applicants to electronically signal a select number of programs in a specialty of choice, with the program reviewing the application now cognizant that they have been signaled, i.e., the applicant has chosen to use up a limited set of signals for their program. Initial results from otolaryngology and urology, as described in this article, indicated the value of this new system to both applicants and educators. Given the favorable outcomes and broader uptake of the system among other specialties, the field of neurosurgery adopted the utilization of the ERAS-based program signaling and geographic preference for the first time for the 2022-2023 Residency Application Cycle and later opted to continue them for the 2023-2024 and 2024-2025 cycles. For the 2024-2025 Match Cycle, neurosurgery applicants have 25 signals, i.e., a "high-signal" approach, where non-signaled programs have a low interview conversion rate. This literature review discusses the rationale behind the change, the outcomes of other competitive specialties from prior cycles, the evolving nature of the change, and the potential impact on applicants and programs. As we describe in this review, signaling may potentially represent a surrogate form of an application cap. Other considerations relate to cost savings for both applicants and programs from a high-signal approach in neurosurgery. These modifications represent a foundational attempt to alleviate the application overburdening and non-holistic review in the residency application process, including for neurosurgery. While these changes have been a welcomed addition for all stakeholders in residency match cycles so far, further prospectively directed surveys along with qualitative research studies are warranted to better delineate the downstream impact of these changes and guide further optimization of the application system.