- Browse by Author
Browsing by Author "Owens, Jake L."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item PRMT5 Cooperates with pICln to Function as a Master Epigenetic Activator of DNA Double-Strand Break Repair Genes(Elsevier, 2020-01-24) Owens, Jake L.; Beketova, Elena; Liu, Sheng; Tinsley, Samantha L.; Asberry, Andrew M.; Deng, Xuehong; Huang, Jiaoti; Li, Chenglong; Wan, Jun; Hu, Chang-Deng; Medical and Molecular Genetics, School of MedicineDNA double-strand break (DSB) repair is critical for cell survival and genome integrity. Upon recognition of DSBs, repair proteins are transiently upregulated to facilitate repair through homologous recombination (HR) or non-homologous end joining (NHEJ). We present evidence that PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA damage response (DDR) genes involved in HR, NHEJ, and G2 arrest (including RAD51, BRCA1, and BRCA2) to upregulate gene expression upon DNA damage. Contrary to the predominant role of PRMT5 as an epigenetic repressor, our results demonstrate that PRMT5 and pICln can activate gene expression, potentially independent of PRMT5's obligate cofactor MEP50. Targeting PRMT5 or pICln hinders repair of DSBs in multiple cancer cell lines, and both PRMT5 and pICln expression positively correlates with DDR genes across 32 clinical cancer datasets. Thus, targeting PRMT5 or pICln may be explored in combination with radiation or chemotherapy for cancer treatment.Item PRMT5 is a master epigenetic regulator to promote repair of radiation-induced DNA damage(Cambridge University Press, 2018-06) Owens, Jake L.; Medicine, School of MedicineOBJECTIVES/SPECIFIC AIMS: We recently reported that PRMT5 epigenetically activates androgen receptor (AR) in prostate cancer cells. Because targeting AR signaling through androgen deprivation therapy is clinically used as a radiosensitization approach to treat high-risk prostate cancer, our finding raised an exciting possibility that targeting PRMT5 may improve RT for prostate cancer patients. Contrary to our expectation, targeting PRMT5 sensitized both AR expressing and AR negative (AR−) prostate cancer cell lines to radiation. The goal of our study was therefore to determine the role of PRMT5 in repair of IR-induced DSBs and to translate these findings to improving radiation therapy for cancer patients in general (not just prostate cancer patients). METHODS/STUDY POPULATION: The majority of experiments were basic science experiments analyzing PRMT5’s role in the DNA damage response in normal and cancer cell lines. For example, to extend our findings and determine if PRMT5’s role in DSB repair is conserved across multiple cell types, we performed similar experiments in AR− prostate cancer cells, luminal breast cancer cells, glioblastoma cells, and human embryonic kidney cells. To determine the clinical significance of our finding, we also analyzed mRNA expression of PRMT5, AR, and both PRMT5 and AR target genes involved in DSB repair across 43 clinical cancer data sets. RESULTS/ANTICIPATED RESULTS: (1) Targeting PRMT5 sensitizes prostate cancer cells to IR in an AR-independent manner, (2) PRMT5 regulates the repair of IR-induced DSBs in an AR-independent manner, (3) RNA-seq analysis reveals that PRMT5 likely regulates genes involved in the DNA damage response, (4) PRMT5 activates expression of several genes in the DDR including those involved in DSB repair, (5) PRMT5 functions as an epigenetic activator of genes involved in DDR, (6) PRMT5 is required for NHEJ, HR, and G2-Arrest upon IR treatment, (7) Upregulation of PRMT5 correlates with formation and repair of IR-induced DSBs, (8) PRMT5’s role in repair of IR-induced DSBs is conserved in several normal and cancer cell types, and (9) PRMT5 expression correlates with expression of DSB repair proteins in clinical cancer samples. DISCUSSION/SIGNIFICANCE OF IMPACT: In summary, we provide evidence that PRMT5 is a master epigenetic regulator of IR-induced DSB repair through epigenetic activation of multiple target genes involved both HR and NHEJ as well as G2 arrest. Interestingly, the majority of genes regulated by PRMT5 are well-characterized, “core repair proteins” involved in HR (RAD51, BRCA1, BRCA2, RAD51D, and RAD51AP1), NHEJ (NHEJ1, Ku80, XRCC4, and DNAPKcs), and G2 arrest (Cdk1, CDC25C, CCNB2, and WEE1), which may explain why PRMT5 is essential to repair IR-induced DSBs in several cell lines. Although AR may also regulate DSB repair via both HR and NHEJ, several pieces of evidence in our study suggest that PRMT5 also regulates DSB repair independent of AR. First, PRMT5 targeting sensitizes both AR+ and AR− prostate cancer cells to IR. Second, exogenous expression of AR only partially rescues the impairment of IR-induced DSB repair by PRMT5 knockdown. Third, PRMT5 knockdown increases IR-induced DSB in AR− DU145 cells and several other cancer cell lines and normal cells. Fourth, PRMT5 expression correlates positively with the expression of its target genes in multiple human cancer tissues. During preparation of this project, Braun et al. reported that PRMT5 post-translationally regulates the splicing out of detained-introns (DI)s of genes to modulate gene expression. However, analysis of their data showed that the majority of DEGs we identified either do not contain DIs or DI splicing was not affected by targeting PRMT5. In addition, Clarke et al. reported that PRMT5 participates in the DSB repair choice process and promotes HR through methylation of RUVBL1. It is therefore likely that PRMT5 regulates repair of IR-induced DSB via multiple mechanisms. As PRMT5 is overexpressed in many human cancers and its overexpression correlates with poor prognosis, our findings suggest that increased DSB repair by PRMT5 overexpression in these human cancers may confer survival advantages particularly following DNA damaging treatment. Because targeting DSB repair has been proven to be a valid therapeutic approach for cancer treatment, our findings here also suggest that PRMT5 targeting may be explored as a monotherapy or in combination therapy with RT or chemotherapy for cancer treatment.Item Protein arginine methyltransferase 5 promotes pICln-dependent androgen receptor transcription in castration-resistant prostate cancer(American Association for Cancer Research, 2020-11-15) Beketova, Elena; Fang, Shuyi; Owens, Jake L.; Liu, Sheng; Chen, Xufeng; Zhang, Qingfu; Asberry, Andrew M.; Deng, Xuehong; Malola, Jonathan; Huang, Jiaoti; Li, Chenglong; Pili, Roberto; Elzey, Bennett D.; Ratliff, Timothy L.; Wan, Jun; Hu, Chang-Deng; BioHealth Informatics, School of Informatics and ComputingThe majority of advanced prostate cancer therapies aim to inhibit androgen receptor (AR) signaling. However, AR reactivation inevitably drives disease progression to castration-resistant prostate cancer (CRPC). Here we demonstrate that protein arginine methyltransferase 5 (PRMT5) functions as an epigenetic activator of AR transcription in CRPC, requiring cooperation with a methylosome subunit pICln. In vitro and in xenograft tumors in mice, targeting PRMT5 or pICln suppressed growth of CRPC cells. Full-length AR and AR-V7 transcription activation required both PRMT5 and pICln but not MEP50. This activation of transcription was accompanied by PRMT5-mediated symmetric dimethylation of H4R3 at the proximal AR promoter. Further, knockdown of PRMT5 abolished the binding of pICln (but not vice versa) to the AR proximal promoter region, suggesting that PRMT5 recruits pICln to the AR promoter to activate AR transcription. Differential gene expression analysis in 22Rv1 cells confirmed that PRMT5 and pICln both regulate the androgen signaling pathway. In addition, PRMT5 and pICln protein expression positively correlated with AR and AR-V7 protein expression in CRPC tissues and their expression was highly correlated at the mRNA level across multiple publicly available CRPC datasets. Our results suggest that targeting PRMT5 or pICln may be explored as a novel therapy for CRPC treatment by suppressing expression of AR and AR splice variants to circumvent AR reactivation. SIGNIFICANCE: This study provides evidence that targeting PRMT5 can eliminate expression of AR and can be explored as a novel therapeutic approach to treat metastatic hormone-naïve and castration-resistant prostate cancer.Item Targeting Protein Arginine Methyltransferase 5 Suppresses Radiation-induced Neuroendocrine Differentiation and Sensitizes Prostate Cancer Cells to Radiation(American Association for Cancer Research, 2022) Owens, Jake L.; Beketova, Elena; Liu, Sheng; Shen, Qi; Pawar, Jogendra Singh; Asberry, Andrew M.; Yang, Jie; Deng, Xuehong; Elzey, Bennett D.; Ratliff, Timothy L.; Cheng, Liang; Choo, Richard; Citrin, Deborah E.; Polascik, Thomas J.; Wang, Bangchen; Huang, Jiaoti; Li, Chenglong; Wan, Jun; Hu, Chang-Deng; Medical and Molecular Genetics, School of MedicineProstate cancer remains the second leading cause of cancer death among American men. Radiotherapy is a potentially curative treatment for localized prostate cancer, and failure to control localized disease contributes to the majority of prostate cancer deaths. Neuroendocrine differentiation (NED) in prostate cancer, a process by which prostate adenocarcinoma cells transdifferentiate into neuroendocrine-like (NE-like) cells, is an emerging mechanism of resistance to cancer therapies and contributes to disease progression. NED also occurs in response to treatment to promote the development of treatment-induced neuroendocrine prostate cancer (NEPC), a highly aggressive and terminal stage disease. We previously demonstrated that by mimicking clinical radiotherapy protocol, fractionated ionizing radiation (FIR) induces prostate cancer cells to undergo NED in vitro and in vivo. Here, we performed transcriptomic analysis and confirmed that FIR-induced NE-like cells share some features of clinical NEPC, suggesting that FIR-induced NED represents a clinically relevant model. Furthermore, we demonstrated that protein arginine methyltransferase 5 (PRMT5), a master epigenetic regulator of the DNA damage response and a putative oncogene in prostate cancer, along with its cofactors pICln and MEP50, mediate FIR-induced NED. Knockdown of PRMT5, pICln, or MEP50 during FIR-induced NED and sensitized prostate cancer cells to radiation. Significantly, PRMT5 knockdown in prostate cancer xenograft tumors in mice during FIR prevented NED, enhanced tumor killing, significantly reduced and delayed tumor recurrence, and prolonged overall survival. Collectively, our results demonstrate that PRMT5 promotes FIR-induced NED and suggests that targeting PRMT5 may be a novel and effective radiosensitization approach for prostate cancer radiotherapy.