- Browse by Author
Browsing by Author "Owen, Meredith K."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome(Elsevier, 2016-06) McKenney-Drake, Mikaela L.; Rodenbeck, Stacey D.; Owen, Meredith K.; Schultz, Kyle A.; Alloosh, Mouhamad; Tune, Johnathan D.; Sturek, Michael; Department of Cellular and Integrative Physiology, School of MedicineBACKGROUND AND AIMS: Coronary artery disease (CAD) is progressive, classified by stages of severity. Alterations in Ca(2+) regulation within coronary smooth muscle (CSM) cells in metabolic syndrome (MetS) have been observed, but there is a lack of data in relatively early (mild) and late (severe) stages of CAD. The current study examined alterations in CSM Ca(2+) regulation at several time points during CAD progression. METHODS: MetS was induced by feeding an excess calorie atherogenic diet for 6, 9, or 12 months and compared to age-matched lean controls. CAD was measured with intravascular ultrasound (IVUS). Intracellular Ca(2+) was assessed with fura-2. RESULTS: IVUS revealed that the extent of atherosclerotic CAD correlated with the duration on atherogenic diet. Fura-2 imaging of intracellular Ca(2+) in CSM cells revealed heightened Ca(2+) signaling at 9 months on diet, compared to 6 and 12 months, and to age-matched lean controls. Isolated coronary artery rings from swine fed for 9 months followed the same pattern, developing greater tension to depolarization, compared to 6 and 12 months (6 months = 1.8 ± 0.6 g, 9 months = 5.0 ± 1.0 g, 12 months = 0.7 ± 0.1 g). CSM in severe atherosclerotic plaques showed dampened Ca(2+) regulation and decreased proliferation compared to CSM from the wall. CONCLUSIONS: These CSM Ca(2+) regulation data from several time points in CAD progression and severity help to resolve the controversy regarding up-vs. down-regulation of CSM Ca(2+) regulation in previous reports. These data are consistent with the hypothesis that alterations in sarcoplasmic reticulum Ca(2+) contribute to progression of atherosclerotic CAD in MetS.Item Contribution of hydrogen sulfide to the control of coronary blood flow(Wiley, 2014-02) Casalini, Eli D.; Goodwill, Adam G.; Owen, Meredith K.; Moberly, Steven P.; Berwick, Zachary C.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, IU School of MedicineThis study examined the mechanisms by which H2S modulates coronary microvascular resistance and myocardial perfusion at rest and in response to cardiac ischemia. Experiments were conducted in isolated coronary arteries and in open-chest anesthetized dogs. We found that the H2S substrate L-cysteine (1-10 mM) did not alter coronary tone of isolated arteries in vitro or coronary blood flow in vivo. In contrast, intracoronary (ic) H2S (0.1-3 mM) increased coronary flow from 0.49 ± 0.08 to 2.65 ± 0.13 ml/min/g (P□0.001). This increase in flow was unaffected by inhibition of Kv channels with 4-aminopyridine (P=0.127) but was attenuated (0.23 ± 0.02 to 1.13 ± 0.13 ml/min/g) by the KATP channel antagonist glibenclamide (P□0.001). Inhibition of NO synthesis (L-NAME) did not attenuate coronary responses to H2S. Immunohistochemistry revealed expression of cystathionine gamma-lyase (CSE), an endogenous H2S enzyme, in myocardium. Inhibition of CSE with β-cyano-L-alanine (10 µM) had no effect on baseline coronary flow or responses to a 15 sec coronary occlusion (P=0.82). These findings demonstrate that exogenous H2S induces potent, endothelial-independent dilation of the coronary microcirculation predominantly through the activation of KATP channels, however, our data do not support a functional role for endogenous H2S in the regulation of coronary microvascular resistance.Item Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels(Ovid Technologies Wolters Kluwer - American Heart Association, 2015-06) Noblet, Jillian N.; Owen, Meredith K.; Goodwill, Adam G.; Sassoon, Daniel J.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, IU School of MedicineOBJECTIVE: The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS: Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS: These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.Item Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm(Oxford University Press, 2014-09-01) Hiett, S. Christopher; Owen, Meredith K.; Li, Wennan; Chen, Xingjuan; Riley, Ashley; Noblet, Jillian; Flores, Sarah; Sturek, Michael; Tune, Johnathan D.; Obukhov, Alexander G.; Department of Cellular & Integrative Physiology, IU School of MedicineAIMS: The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. METHODS AND RESULTS: Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1-10 μM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with a Gq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 μM), capsaicin first induced transient dilation that was followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 μM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 μM nifedipine and 70 mM KCl. Capsaicin also potentiated 20 mM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that the Gq/11-phospholipase C (PLC)-protein kinase C (PKC) and Ca(2+)-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. CONCLUSION: Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin-thromboxane agonists may unmask capsaicin's vasoconstrictive potential.Item Repeat cross-sectional data on the progression of the metabolic syndrome in Ossabaw miniature swine(Elsevier, 2016-04-13) McKenney-Drake, Mikaela L.; Rodenbeck, Stacey D.; Owen, Meredith K.; Schultz, Kyle A.; Alloosh, Mouhamad; Tune, Johnathan D.; Sturek, Michael; Department of Cellular & Integrative Physiology, IU School of MedicineOssabaw miniature swine were fed an excess calorie, atherogenic diet for 6, 9, or 12 months. Increased body weight, hypertension, and increased plasma cholesterol and triglycerides are described in Table 1. For more detailed interpretations and conclusions about the data, see our associated research study, "Biphasic alterations in coronary smooth muscle Ca(2+) regulation during coronary artery disease progression in metabolic syndrome" McKenney-Drake, et al.