- Browse by Author
Browsing by Author "Overholser, Brian R."
Now showing 1 - 10 of 25
Results Per Page
Sort Options
Item 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10(Elsevier, 2016-12) Wang, Xiaoliang; Wang, Hongwei; Shen, Bing; Overholser, Brian R.; Cooper, Bruce R.; Lu, Yinghao; Tang, Huamei; Zhou, Chongzhi; Sun, Xing; Zhong, Lin; Favus, Murray J.; Decker, Brian S.; Liu, Wanqing; Peng, Zhihai; Department of Medicine, IU School of MedicineMycophenolic acid (MPA) is an important immunosuppressant broadly used in renal transplantation. However, the large inter-patient variability in mycophenolic acid (MPA) pharmacokinetics (PK) limits its use. We hypothesize that extrahepatic metabolism of MPA may have significant impact on MPA PK variability. Two intestinal UDP-glucuronosyltransferases 1A8 and 1A10 plays critical role in MPA metabolism. Both in silico and previous genome-wide analyses suggested that vitamin D (VD) may regulate intestinal UGT1A expression. We validated the VD response elements (VDREs) across the UGT1A locus with chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The impact of 1-alpha,25-dihydroxyvitamin D3 (D3) on UGT1A8 and UGT1A10 transcription and on MPA glucuronidation was tested in human intestinal cell lines LS180, Caco-2 and HCT-116. The correlation between transcription levels of VD receptor (VDR) and the two UGT genes were examined in human normal colorectal tissue samples (n = 73). PK alterations of MPA following the parent drug, mycophenolate mofetil (MMF), and D3 treatment was assessed among renal transplant recipients (n = 10). Our ChIP assay validate three VDREs which were further demonstrated as transcriptional enhancers with the luciferase assays. D3 treatment significantly increased transcription of both UGT genes as well as MPA glucuronidation in cells. The VDR mRNA level was highly correlated with that of both UGT1A8 and UGT1A10 in human colorectal tissue. D3 treatment in patients led to about 40% reduction in both AUC0-12 and Cmax while over 70% elevation of total clearance of MPA. Our study suggested a significant regulatory role of VD on MPA metabolism and PK via modulating extrahepatic UGT activity.Item A Novel Perioperative Multidose Methadone-Based Multimodal Analgesic Strategy in Children Achieved Safe and Low Analgesic Blood Methadone Levels Enabling Opioid-Sparing Sustained Analgesia With Minimal Adverse Effects(Wolters Kluwer, 2021) Sadhasivam, Senthilkumar; Aruldhas, Blessed W.; Packiasabapathy, Senthil; Overholser, Brian R.; Zhang, Pengyue; Zang, Yong; Renschler, Janelle S.; Fitzgerald, Ryan E.; Quinney, Sara K.; Anesthesia, School of MedicineBackground: Intraoperative methadone, a long-acting opioid, is increasingly used for postoperative analgesia, although the optimal methadone dosing strategy in children is still unknown. The use of a single large dose of intraoperative methadone is controversial due to inconsistent reductions in total opioid use in children and adverse effects. We recently demonstrated that small, repeated doses of methadone intraoperatively and postoperatively provided sustained analgesia and reduced opioid use without respiratory depression. The aim of this study was to characterize pharmacokinetics, efficacy, and safety of a multiple small-dose methadone strategy. Methods: Adolescents undergoing posterior spinal fusion (PSF) for idiopathic scoliosis or pectus excavatum (PE) repair received methadone intraoperatively (0.1 mg/kg, maximum 5 mg) and postoperatively every 12 hours for 3-5 doses in a multimodal analgesic protocol. Blood samples were collected up to 72 hours postoperatively and analyzed for R-methadone and S-methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidene (EDDP) metabolites, and alpha-1 acid glycoprotein (AAG), the primary methadone-binding protein. Peak and trough concentrations of enantiomers, total methadone, and AAG levels were correlated with clinical outcomes including pain scores, postoperative nausea and vomiting (PONV), respiratory depression, and QT interval prolongation. Results: The study population included 38 children (10.8-17.9 years): 25 PSF and 13 PE patients. Median total methadone peak plasma concentration was 24.7 (interquartile range [IQR], 19.2-40.8) ng/mL and the median trough was 4.09 (IQR, 2.74-6.4) ng/mL. AAG concentration almost doubled at 48 hours after surgery (median = 193.9, IQR = 86.3-279.5 µg/mL) from intraoperative levels (median = 87.4, IQR = 70.6-115.8 µg/mL; P < .001), and change of AAG from intraoperative period to 48 hours postoperatively correlated with R-EDDP (P < .001) levels, S-EDDP (P < .001) levels, and pain scores (P = .008). Median opioid usage was minimal, 0.66 (IQR, 0.59-0.75) mg/kg morphine equivalents/d. No respiratory depression (95% Wilson binomial confidence, 0-0.09) or clinically significant QT prolongation (median = 9, IQR = -10 to 28 milliseconds) occurred. PONV occurred in 12 patients and was correlated with morphine equivalent dose (P = .005). Conclusions: Novel multiple small perioperative methadone doses resulted in safe and lower blood methadone levels, <100 ng/mL, a threshold previously associated with respiratory depression. This methadone dosing in a multimodal regimen resulted in lower blood methadone analgesia concentrations than the historically described minimum analgesic concentrations of methadone from an era before multimodal postoperative analgesia without postoperative respiratory depression and prolonged corrected QT (QTc). Larger studies are needed to further study the safety and efficacy of this methadone dosing strategy.Item Association of QT interval-prolonging drugs with clinical trial eligibility in patients with advanced cancer(Frontiers Media, 2022-12-15) Rowe, Elizabeth J.; Shugg, Tyler; Ly, Reynold C.; Philips, Santosh; Rosenman, Marc B.; Callaghan, John T.; Radovich, Milan; Overholser, Brian R.; Schneider, Bryan P.; Tisdale, James E.; Skaar, Todd C.; Medicine, School of MedicineIntroduction: Drug-induced prolongation of the heart rate-corrected QT interval (QTc) is associated with increased risk for the potentially fatal arrhythmia torsades de pointes. Due to arrhythmia risk, clinical trials with cancer therapeutics often exclude patients based on thresholds for QTc prolongation. Our objective was to assess associations between prescriptions for QT-prolonging drugs and the odds of meeting cancer trial exclusionary QTc thresholds in a cohort of adults with advanced cancer. Methods: Electronic health records were retrospectively reviewed for 271 patients seen at our institutional molecular solid tumor clinic. Collected data included demographics, QTc measurements, ventricular arrhythmia-related diagnoses, and all inpatient and outpatient prescriptions. Potential associations were assessed between demographic and clinical variables, including prescriptions for QT-prolonging drugs, and QTc measurements. Results: Women had longer median QTc measurements than men (p = 0.030) and were prescribed more QT-prolonging drugs during the study (p = 0.010). In all patients, prescriptions for QT-prolonging drugs were associated with longer median and maximum QTc measurements at multiple assessed time points (i.e., for QT-prolonging drugs prescribed within 10, 30, 60, and 90 days of QTc measurements). Similarly, the number of QT-prolonging drugs prescribed was correlated with longer median and maximum QTc measurements at multiple time points. Common QTc-related exclusionary criteria were collected from a review of ClinicalTrials.gov for recent cancer clinical trials. Based on common exclusion criteria, prescriptions for QT-prolonging drugs increased the odds of trial exclusion. Conclusion: This study demonstrates that prescriptions for QT-prolonging drugs were associated with longer QTc measurements and increased odds of being excluded from cancer clinical trials.Item Calcium/Calmodulin-Dependent Protein Kinase II Regulation of IKs during Sustained Beta-Adrenergic Receptor Stimulation(Elsevier, 2018) Shugg, Tyler; Johnson, Derrick E.; Shao, Minghai; Lai, Xianyin; Witzmann, Frank; Cummins, Theodore R.; Rubart-Von der Lohe, Michael; Hudmon, Andy; Overholser, Brian R.; Biochemistry and Molecular Biology, School of MedicineBackground Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent protein kinase II (CaMKII), contributes to arrhythmia development during HF. Objective The purpose of this study was to investigate CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and associated functional implications on IKs. Methods KCNQ1 phosphorylation was assessed using LCMS/MS after sustained β-AR stimulation with isoproterenol (ISO). Peptide fragments corresponding to KCNQ1 residues were synthesized to identify CaMKII phosphorylation at the identified sites. Dephosphorylated (alanine) and phosphorylated (aspartic acid) mimics were introduced at identified residues. Whole-cell, voltage-clamp experiments were performed in human endothelial kidney 293 cells coexpressing wild-type or mutant KCNQ1 and KCNE1 (auxiliary subunit) during ISO treatment or lentiviral δCaMKII overexpression. Results Novel KCNQ1 carboxy-terminal sites were identified with enhanced phosphorylation during sustained β-AR stimulation at T482 and S484. S484 peptides demonstrated the strongest δCaMKII phosphorylation. Sustained β-AR stimulation reduced IKs activation (P = .02 vs control) similar to the phosphorylated mimic (P = .62 vs sustained β-AR). Individual phosphorylated mimics at S484 (P = .04) but not at T482 (P = .17) reduced IKs function. Treatment with CN21 (CaMKII inhibitor) reversed the reductions in IKs vs CN21-Alanine control (P < .01). δCaMKII overexpression reduced IKs similar to ISO treatment in wild type (P < .01) but not in the dephosphorylated S484 mimic (P = .99). Conclusion CaMKII regulates KCNQ1 at S484 during sustained β-AR stimulation to inhibit IKs. The ability of CaMKII to inhibit IKs may contribute to arrhythmogenicity during HF.Item The CYP3A5 genotypes of both liver transplant recipients and donors influence the time-dependent recovery of tacrolimus clearance during the early stage following transplantation(Wiley, 2021-10) Huang, Li; Assiri, Abdullah A.; Wen, Peihao; Zhang, Kun; Fan, Junwei; Xing, Tonghai; Liu, Yuan; Zhang, Jinyan; Wang, Zhaowen; Su, Zhaojie; Chen, Jiajia; Xiao, Yi; Wang, Rui; Na, Risi; Yuan, Liyun; Liu, Dehua; Xia, Junjie; Zhong, Lin; Liu, Wanqing; Guo, Wenzhi; Overholser, Brian R.; Peng, Zhihai; Medicine, School of MedicineItem Drug-induced atrial fibrillation(Springer Nature, 2012-08-20) Kaakeh, Yaman; Overholser, Brian R.; Lopshire, John C.; Tisdale, James E.; Medicine, School of MedicineAtrial fibrillation (AF) is a common cardiac arrhythmia that is associated with severe consequences, including symptoms, haemodynamic instability, increased cardiovascular mortality and stroke. While other arrhythmias such as torsades de pointes and sinus bradycardia are more typically thought of as drug induced, AF may also be precipitated by drug therapy, although ascribing causality to drug-associated AF is more difficult than with other drug-induced arrhythmias. Drug-induced AF is more likely to occur in patients with risk factors and co-morbidities that commonly co-exist with AF, such as advanced age, alcohol consumption, family history of AF, hypertension, thyroid dysfunction, sleep apnoea and heart disease. New-onset AF has been associated with cardiovascular drugs such as adenosine, dobutamine and milrinone. In addition, medications such as corticosteroids, ondansetron and antineoplastic agents such as paclitaxel, mitoxantrone and doxorubicin have been reported to induce AF. Whether bisphosphonate drugs are associated with new-onset AF remains controversial and requires further study. The potential contribution of specific drug therapy should be considered when patients present with new-onset AF.Item Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers(Wiley, 2016-10) Abdelhady, Ahmed M.; Shugg, Tyler; Thong, Nancy; Li Lu, Jessica Bo; Kreutz, Yvonne; Jaynes, Heather A.; Robarge, Jason D.; Tisdale, James E.; Desta, Zeruesenay; Overholser, Brian R.; Pharmacology and Toxicology, School of MedicineBackground Efavirenz (EFV) has been associated with torsade de pointes despite marginal QT interval lengthening. Since EFV is metabolized by the cytochrome P450 (CYP) 2B6 enzyme, we hypothesized that EFV would lengthen the rate-corrected QT (QTcF) interval in carriers of the CYP2B6*6 decreased functional allele. Objective The primary objective of this study was to evaluate EFV-associated QT interval changes with regard to CYP2B6 genotype and to explore mechanisms of QT interval lengthening. Methods EFV was administered to healthy volunteers (n=57) as a single 600 mg dose followed by multiple doses to steady-state. Subjects were genotyped for known CYP2B6 alleles and ECGs and EFV plasma concentrations were obtained serially. Whole-cell, voltage-clamp experiments were performed on cells stably expressing hERG and exposed to EFV in the presence and absence of CYP2B6 expression. Results EFV demonstrated a gene-dose effect and exceeded the FDA criteria for QTcF interval prolongation in CYP2B6*6/*6 carriers. The largest mean time-matched differences ΔΔQTcF were observed at 6 hrs (14 ms; 95% CI [1; 27]), 12 hrs (18 ms; 95% CI [−4; 40] and 18 hrs (6 ms; 95% CI [−1; 14]) in the CYP2B6*6/*6 genotype. EFV concentrations exceeding 0.4 µg/mL significantly inhibited outward hERG tail currents (P<0.05). Conclusions This study demonstrates that homozygous carriers of CYP2B6*6 allele may be at increased risk for EFV-induced QTcF interval prolongation via inhibition of hERG.Item Effect of Transdermal Testosterone and Oral Progesterone on Drug-Induced QT Interval Lengthening in Older Men(American Heart Association, 2019-09-23) Muensterman, Elena Tomaselli; Jaynes, Heather A.; Sowinski, Kevin M.; Overholser, Brian R.; Shen, Changyu; Kovacs, Richard J.; Tisdale, James E.; Medicine, School of MedicineItem Effectiveness of a clinical decision support system for reducing the risk of QT interval prolongation in hospitalized patients(Ovid Technologies Wolters Kluwer - American Heart Association, 2014-05) Tisdale, James E.; Jaynes, Heather A.; Kingery, Joanna R.; Overholser, Brian R.; Mourad, Noha A.; Trujillo, Tate N.; Kovacs, Richard J.; Department of Medicine, IU School of MedicineBACKGROUND: We evaluated the effectiveness of a computer clinical decision support system (CDSS) for reducing the risk of QT interval prolongation in hospitalized patients. METHODS AND RESULTS: We evaluated 2400 patients admitted to cardiac care units at an urban academic medical center. A CDSS incorporating a validated risk score for QTc prolongation was developed and implemented using information extracted from patients' electronic medical records. When a drug associated with torsades de pointes was prescribed to a patient at moderate or high risk for QTc interval prolongation, a computer alert appeared on the screen to the pharmacist entering the order, who could then consult the prescriber on alternative therapies and implement more intensive monitoring. QTc interval prolongation was defined as QTc interval >500 ms or increase in QTc of ≥60 ms from baseline; for patients who presented with QTc >500 ms, QTc prolongation was defined solely as increase in QTc ≥60 ms from baseline. End points were assessed before (n=1200) and after (n=1200) implementation of the CDSS. CDSS implementation was independently associated with a reduced risk of QTc prolongation (adjusted odds ratio, 0.65; 95% confidence interval, 0.56-0.89; P<0.0001). Furthermore, CDSS implementation reduced the prescribing of noncardiac medications known to cause torsades de pointes, including fluoroquinolones and intravenous haloperidol (adjusted odds ratio, 0.79; 95% confidence interval, 0.63-0.91; P=0.03). CONCLUSIONS: A computer CDSS incorporating a validated risk score for QTc prolongation influences the prescribing of QT-prolonging drugs and reduces the risk of QTc interval prolongation in hospitalized patients with torsades de pointes risk factors.Item Effects of oxycodone pharmacogenetics on postoperative analgesia and related clinical outcomes in children: a pilot prospective study(Taylor & Francis, 2023) Aruldhas, Blessed W.; Quinney, Sara K.; Packiasabapathy, Senthil; Overholser, Brian R.; Raymond, Olivia; Sivam, Sahana; Sivam, Inesh; Velu, Sanjana; Montelibano, Antoinette; Sadhasivam, Senthilkumar; Medicine, School of MedicineBackground: Variability in the pharmacokinetics and pharmacodynamics of oxycodone in children undergoing surgery could be due to genetic polymorphisms. Materials & methods: The authors studied the association between clinical outcomes and pharmacogenes in children undergoing major surgery. A total of 89 children (35 undergoing pectus excavatum repair and 54 undergoing spinal fusion) were recruited. Results: OPRM1 SNP rs6902403 showed an association with maximum pain score and total morphine equivalent dose (p < 0.05). Other polymorphisms in OPRM1 SNP, PXR, COMT and ABCB1 were also shown to be associated with average morphine equivalent dose, length of hospital stay and maximum surgical pain (p < 0.05). Conclusion: This study demonstrates novel associations between the above pharmacogenes and oxycodone's pharmacokinetics as well as postoperative outcomes in children.
- «
- 1 (current)
- 2
- 3
- »