- Browse by Author
Browsing by Author "Ostrov, David A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Human Leukocyte Antigen B*14:01 and B*35:01 Are Associated With Trimethoprim-Sulfamethoxazole Induced Liver Injury(Wolters Kluwer, 2021) Li, Yi-Ju; Phillips, Elizabeth J.; Dellinger, Andrew; Nicoletti, Paola; Schutte, Ryan; Li, Danmeng; Ostrov, David A.; Fontana, Robert J.; Watkins, Paul B.; Stolz, Andrew; Daly, Ann K.; Aithal, Guruprasad P.; Barnhart, Huiman; Chalasani, Naga; Drug-induced Liver Injury Network (DILIN); Medicine, School of MedicineBackground and aims: Trimethoprim (TMP)-sulfamethoxazole (SMX) is an important cause of idiosyncratic drug-induced liver injury (DILI), but its genetic risk factors are not well understood. This study investigated the relationship between variants in the human leukocyte antigen (HLA) class 1 and 2 genes and well-characterized cases of TMP-SMX DILI. Approach and results: European American and African American persons with TMP-SMX DILI were compared with respective population controls. HLA sequencing was performed by Illumina MiSeq (Illumina, San Diego, CA) for cases. The HLA genotype imputation with attribute bagging program was used to impute HLA alleles for controls. The allele frequency difference between case patients and controls was tested by Fisher's exact tests for each ethnic group. For European Americans, multivariable logistic regression with Firth penalization was used to test the HLA allelic effect after adjusting for age and the top two principal components. Molecular docking was performed to assess HLA binding with TMP and SMX. The European American subset had 51 case patients and 12,156 controls, whereas the African American subset had 10 case patients and 5,439 controls. Four HLA alleles were significantly associated in the European American subset, with HLA-B*14:01 ranking at the top (odds ratio, 9.20; 95% confidence interval, 3.16, 22.35; P = 0.0003) after covariate adjustment. All carriers of HLA-B*14:01 with TMP-SMX DILI possessed HLA-C*08:02, another significant allele (P = 0.0026). This pattern was supported by HLA-B*14:01-HLA-C*08:02 haplotype association (P = 1.33 × 10-5 ). For the African American patients, HLA-B*35:01 had 2.8-fold higher frequency in case patients than in controls, with 5 of 10 patients carrying this allele. Molecular docking showed cysteine at position 67 in HLA-B*14:01 and phenylalanine at position 67 in HLA-B*35:01 to be the predictive binding sites for SMX metabolites. Conclusions: HLA-B*14:01 is associated with TMP-SMX DILI in European Americans, and HLA-B*35:01 may be a potential genetic risk factor for African Americans.Item Role of Proinsulin Self-Association in Mutant INS Gene–Induced Diabetes of Youth(American Diabetes Association, 2020-05) Sun, Jinhong; Xiong, Yi; Li, Xin; Haataja, Leena; Chen, Wei; Mir, Saiful A.; Lv, Li; Madley, Rachel; Larkin, Dennis; Anjum, Arfah; Dhayalan, Balamurugan; Rege, Nischay; Wickramasinghe, Nalinda P.; Weiss, Michael A.; Itkin-Ansari, Pamela; Kaufman, Randal J.; Ostrov, David A.; Arvan, Peter; Liu, Ming; Biochemistry and Molecular Biology, School of MedicineAbnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.