- Browse by Author
Browsing by Author "Ortiz, Miguel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cardiac and Renal Delayed Effects of Acute Radiation Exposure: Organ Differences in Vasculopathy, Inflammation, Senescence and Oxidative Balance(Radiation Research Society, 2019-05) Unthank, Joseph L.; Ortiz, Miguel; Trivedi, Hina; Pelus, Louis M.; Sampson, Carol H.; Sellamuthu, Rajendran; Fisher, Alexa; Chua, Hui Lin; Plett, Artur; Orschel, Christie M.; Cohen, Eric P.; Miller, Steven J.; Surgery, School of MedicineWe have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.Item Delayed effects of acute radiation exposure on the cardiovascular system using a murine model of the hematopoietic acute radiation syndrome(Office of the Vice Chancellor for Research, 2016-04-08) Thungu, Beatrice; Ortiz, Miguel; Unthank, Joseph L.; Orschell, Christie M.; Miller, Steven J.Introduction. Exposure to high level radiation from accidents or belligerent activities results in acute and chronic organ damage. The hematopoietic system is the most sensitive organ to radiation damage (2-10 Gy) and results in the hematopoietic acute radiation syndrome (H-ARS). Survivors of H-ARS are plagued months to years later with delayed effects of acute radiation exposure (DEARE), characterized by chronic illnesses affecting multiple organ systems. Previous results using the murine H-ARS model showed numerous kidney and heart DEARErelated pathologies similar to humans, including tissue fibrosis and elevated blood urea nitrogen. The goal of this study was to utilize the murine H-ARS model to determine possible roles for abnormal iron metabolism, inflammation, oxidant stress, and senescence in the development of cardiac DEARE. Methods. Mice (C57BL/6; 12 week-old) received total body irradiation (TBI: ~8.5-8.7 Gy, 137Cs, LD50to LD70) and hearts were harvested at various times post-TBI from H-ARS survivors. Paraffin tissue sections were stained with hematoxylin/eosin or Perls Prussian Blue, or reacted with a macrophage-specific antibody (F4/80). Total RNA was purified from fresh tissue and changes in mRNA expression were assessed by real-time PCR for the senescence marker p16 and NADPH oxidase subunits Nox2, Nox4, or p47phox. Results/Significance. Compared to age-matched non-irradiated controls (NI), tissue iron deposits were increased in irradiated (IR) hearts at 4 months, and progressively declined with time post-TBI. Numbers of macrophages were greater in IR vs. NI sections at all time points and decreased with time post-TBI. Nox2 and Nox4 mRNA expression was increased at both 9 and 21 months post-TBI, but p47phox increased only at 21 months. Expression of p16 in IR heart was increased at 7, but not at 22 months post-TBI. Taken together, the results indicate abnormal iron metabolism, inflammation, oxidant stress, and early senescence may contribute to development of cardiac DEARE.Item Further Characterization of Multi-Organ DEARE and Protection by 16,16 Dimethyl Prostaglandin E2 in a Mouse Model of the Hematopoietic Acute Radiation Syndrome(BioOne, 2023) Wu, Tong; Pelus, Louis M.; Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Fisher, Alexa; Feng, Hailin; Liu, Liqiong; Li, Hongge; Ortiz, Miguel; Chittajallu, Supriya; Luo, Qianyi; Bhatwadekar, Ashay D.; Meyer, Timothy B.; Zhang, Xin; Zhou, Daohong; Fischer, Kathryn D.; McKinzie, David L.; Miller, Steven J.; Orschell, Christie M.; Medicine, School of MedicineSurvivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS. We now describe additional DEARE (physiological and neural function, progressive fur graying, ocular inflammation, and malignancy) developing after sub-threshold doses in our H-ARS model, and detailed analysis of the effects of dmPGE2 administered before (PGE-pre) or after (PGE-post) lethal total-body irradiation (TBI) on these DEARE. Administration of PGE-pre normalized the twofold reduction of white blood cells (WBC) and lymphocytes seen in vehicle-treated survivors (Veh), and increased the number of bone marrow (BM) cells, splenocytes, thymocytes, and phenotypically defined hematopoietic progenitor cells (HPC) and hematopoietic stem cells (HSC) to levels equivalent to those in non-irradiated age-matched controls. PGE-pre significantly protected HPC colony formation ex vivo by >twofold, long term-HSC in vivo engraftment potential up to ninefold, and significantly blunted TBI-induced myeloid skewing. Secondary transplantation documented continued production of LT-HSC with normal lineage differentiation. PGE-pre reduced development of DEARE cardiovascular pathologies and renal damage; prevented coronary artery rarefication, blunted progressive loss of coronary artery endothelia, reduced inflammation and coronary early senescence, and blunted radiation-induced increase in blood urea nitrogen (BUN). Ocular monocytes were significantly lower in PGE-pre mice, as was TBI-induced fur graying. Increased body weight and decreased frailty in male mice, and reduced incidence of thymic lymphoma were documented in PGE-pre mice. In assays measuring behavioral and cognitive functions, PGE-pre reduced anxiety in females, significantly blunted shock flinch response, and increased exploratory behavior in males. No effect of TBI was observed on memory in any group. PGE-post, despite significantly increasing 30-day survival in H-ARS and WBC and hematopoietic recovery, was not effective in reducing TBI-induced RBMD or any other DEARE. In summary, dmPGE2 administered as an H-ARS MCM before lethal TBI significantly increased 30-day survival and ameliorated RBMD and multi-organ and cognitive/behavioral DEARE to at least 12 months after TBI, whereas given after TBI, dmPGE2 enhances survival from H-ARS but has little impact on RBMD or other DEARE.