- Browse by Author
Browsing by Author "Orthopaedic Surgery, IU School of Medicine"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Comparative Effectiveness of Structural versus Regulatory Protein Gene Transfer on Articular Chondrocyte Matrix Gene Expression(Sage, 2019-01) Shi, Shuiliang; Wang, Congrong; Chan, Albert; Kirmani, Kashif; Eckert, George J.; Trippel, Stephen B.; Orthopaedic Surgery, IU School of MedicineOBJECTIVE: The production of extracellular matrix is a necessary component of articular cartilage repair. Gene transfer is a promising method to improve matrix biosynthesis by articular chondrocytes. Gene transfer may employ transgenes encoding regulatory factors that stimulate the production of matrix proteins, or may employ transgenes that encode the proteins themselves. The objective of this study was to determine which of these 2 approaches would be the better choice for further development. We compared these 2 approaches using the transgenes encoding the structural matrix proteins, aggrecan or type II collagen, and the transgene encoding the anabolic factor, insulin-like growth factor I (IGF-I). METHODS: We transfected adult bovine articular chondrocytes with constructs encoding type II collagen, aggrecan, or IGF-I, and measured the expression of type II collagen ( COL2A1) and aggrecan ( ACAN) from their native genes and from their transgenes. RESULTS: IGF-I gene ( IGF1) transfer increased the expression of the native chondrocyte COL2A1 and ACAN genes 2.4 and 2.9 times control, respectively. COL2A1 gene transfer did not significantly increase COL2A1 transcripts, even when the transgene included the genomic COL2A1 regulatory sequences stimulated by chondrogenic growth factors. In contrast, ACAN gene transfer increased ACAN transcripts up to 3.4 times control levels. IGF1, but not ACAN, gene transfer increased aggrecan protein production. CONCLUSION: Taken together, these results suggest that the type II collagen and aggrecan production required for articular cartilage repair will be more effectively achieved by genes that encode anabolic regulatory factors than by genes that encode the matrix molecules themselves.Item Dysfunctional stem and progenitor cells impair fracture healing with age(Baishideng Publishing Group, 2019-06-26) Wagner, Diane R.; Karnik, Sonali; Gunderson, Zachary J.; Nielsen, Jeffery J.; Fennimore, Alanna; Promer, Hunter J.; Lowery, Jonathan W.; Loghmani, M. Terry; Low, Philip S.; McKinley, Todd O.; Kacena, Melissa A.; Clauss, Matthias; Li, Jiliang; Orthopaedic Surgery, IU School of MedicineSuccessful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.Item Shock volume: Patient-specific cumulative hypoperfusion predicts organ dysfunction in a prospective cohort of multiply injured patients(Wolters Kluwer, 2018-07) McKinley, Todd O.; McCarroll, Tyler; Metzger, Cameron; Zarzaur, Ben L.; Savage, Stephanie A.; Bell, Teresa M.; Gaski, Greg E.; Orthopaedic Surgery, IU School of MedicineBACKGROUND: Multiply injured patients are at risk of developing hemorrhagic shock and organ dysfunction. We determined how cumulative hypoperfusion predicted organ dysfunction by integrating serial Shock Index measurements. METHODS: In this study, we calculated shock volume (SHVL) which is a patient-specific index that quantifies cumulative hypoperfusion by integrating abnormally elevated Shock Index (heart rate/systolic blood pressure ≥ 0.9) values acutely after injury. Shock volume was calculated at three hours (3 hr), six hours (6 hr), and twenty-four hours (24 hr) after injury. Organ dysfunction was quantified using Marshall Organ Dysfunction Scores averaged from days 2 through 5 after injury (aMODSD2–D5). Logistic regression was used to determine correspondence of 3hrSHVL, 6hrSHVL, and 24hrSHVL to organ dysfunction. We compared correspondence of SHVL to organ dysfunction with traditional indices of shock including the initial base deficit (BD) and the lowest pH measurement made in the first 24 hr after injury (minimum pH). RESULTS: SHVL at all three time intervals demonstrated higher correspondence to organ dysfunction (R2 = 0.48 to 0.52) compared to initial BD (R2 = 0.32) and minimum pH (R2 = 0.32). Additionally, we compared predictive capabilities of SHVL, initial BD and minimum pH to identify patients at risk of developing high-magnitude organ dysfunction by constructing receiver operator characteristic curves. SHVL at six hours and 24 hours had higher area under the curve compared to initial BD and minimum pH. CONCLUSION: SHVL is a non-invasive metric that can predict anticipated organ dysfunction and identify patients at risk for high-magnitude organ dysfunction after injury. LEVEL OF EVIDENCE: Prognostic study, level III.