ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Orlando, Lori A."

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Design and Rationale of GUARDD-US: A pragmatic, randomized trial of genetic testing for APOL1 and pharmacogenomic predictors of antihypertensive efficacy in patients with hypertension
    (Elsevier, 2022) Eadon, Michael T.; Cavanaugh, Kerri L.; Orlando, Lori A.; Christian, David; Chakraborty, Hrishikesh; Steen-Burrell, Kady-Ann; Merrill, Peter; Seo, Janet; Hauser, Diane; Singh, Rajbir; Maynor Beasley, Cherry; Fuloria, Jyotsna; Kitzman, Heather; Parker, Alexander S.; Ramos, Michelle; Ong, Henry H.; Elwood, Erica N.; Lynch, Sheryl E.; Clermont, Sabrina; Cicali, Emily J.; Starostik, Petr; Pratt, Victoria M.; Nguyen, Khoa A.; Rosenman, Marc B.; Calman, Neil S.; Robinson, Mimsie; Nadkarni, Girish N.; Madden, Ebony B.; Kucher, Natalie; Volpi, Simona; Dexter, Paul R.; Skaar, Todd C.; Johnson, Julie A.; Cooper-DeHoff, Rhonda M.; Horowitz, Carol R.; GUARDD-US Investigators; Medicine, School of Medicine
    Rationale and objective: APOL1 risk alleles are associated with increased cardiovascular and chronic kidney disease (CKD) risk. It is unknown whether knowledge of APOL1 risk status motivates patients and providers to attain recommended blood pressure (BP) targets to reduce cardiovascular disease. Study design: Multicenter, pragmatic, randomized controlled clinical trial. Setting and participants: 6650 individuals with African ancestry and hypertension from 13 health systems. Intervention: APOL1 genotyping with clinical decision support (CDS) results are returned to participants and providers immediately (intervention) or at 6 months (control). A subset of participants are re-randomized to pharmacogenomic testing for relevant antihypertensive medications (pharmacogenomic sub-study). CDS alerts encourage appropriate CKD screening and antihypertensive agent use. Outcomes: Blood pressure and surveys are assessed at baseline, 3 and 6 months. The primary outcome is change in systolic BP from enrollment to 3 months in individuals with two APOL1 risk alleles. Secondary outcomes include new diagnoses of CKD, systolic blood pressure at 6 months, diastolic BP, and survey results. The pharmacogenomic sub-study will evaluate the relationship of pharmacogenomic genotype and change in systolic BP between baseline and 3 months. Results: To date, the trial has enrolled 3423 participants. Conclusions: The effect of patient and provider knowledge of APOL1 genotype on systolic blood pressure has not been well-studied. GUARDD-US addresses whether blood pressure improves when patients and providers have this information. GUARDD-US provides a CDS framework for primary care and specialty clinics to incorporate APOL1 genetic risk and pharmacogenomic prescribing in the electronic health record.
  • Loading...
    Thumbnail Image
    Item
    Developing a Common Framework for Evaluating the Implementation of Genomic Medicine Interventions in Clinical Care: The IGNITE Network’s Common Measures Working Group
    (Nature Publishing group, 2018-06) Orlando, Lori A.; Sperber, Nina R.; Voils, Corrine; Nichols, Marshall; Myers, Rachel A.; Wu, R. Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D.; Levy, Mia; Pollin, Toni I.; Guan, Yue; Horowitz, Carol R.; Ramos, Michelle; Kimmel, Stephen E.; McDonough, Caitrin W.; Madden, Ebony B.; Damschroder, Laura J.; Medicine, School of Medicine
    Purpose Implementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing GeNomics In PracTicE (IGNITE) Network’s efforts to promote: 1) a broader understanding of genomic medicine implementation research; and 2) the sharing of knowledge generated in the network. Methods To facilitate this goal the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide their approach to: identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross network analyses. Results CMG identified ten high-priority CFIR constructs as important for genomic medicine. Of those, eight didn’t have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model. Conclusion We developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.
  • Loading...
    Thumbnail Image
    Item
    Establishing the value of genomics in medicine: the IGNITE Pragmatic Trials Network.
    (Springer, 2021-07) Ginsburg, Geoffrey S.; Cavallari, Larisa H.; Chakraborty, Hrishikesh; Cooper-DeHoff, Rhonda M.; Dexter, Paul R.; Eadon, Michael T.; Ferket, Bart S.; Horowitz, Carol R.; Johnson, Julie A.; Kannry, Joseph; Kucher, Natalie; Madden, Ebony B.; Orlando, Lori A.; Parker, Wanda; Peterson, Josh; Pratt, Victoria M.; Rakhra-Burris, Tejinder K.; Ramos, Michelle A.; Skaar, Todd C.; Sperber, Nina; Steen-Burrell, Kady-Ann; Van Driest, Sara L.; Voora, Deepak; Wiisanen, Kristin; Winterstein, Almut G.; Volpi, Simona
    PURPOSE: A critical gap in the adoption of genomic medicine into medical practice is the need for the rigorous evaluation of the utility of genomic medicine interventions. METHODS: The Implementing Genomics in Practice Pragmatic Trials Network (IGNITE PTN) was formed in 2018 to measure the clinical utility and cost-effectiveness of genomic medicine interventions, to assess approaches for real-world application of genomic medicine in diverse clinical settings, and to produce generalizable knowledge on clinical trials using genomic interventions. Five clinical sites and a coordinating center evaluated trial proposals and developed working groups to enable their implementation. RESULTS: Two pragmatic clinical trials (PCTs) have been initiated, one evaluating genetic risk APOL1 variants in African Americans in the management of their hypertension, and the other to evaluate the use of pharmacogenetic testing for medications to manage acute and chronic pain as well as depression. CONCLUSION: IGNITE PTN is a network that carries out PCTs in genomic medicine; it is focused on diversity and inclusion of underrepresented minority trial participants; it uses electronic health records and clinical decision support to deliver the interventions. IGNITE PTN will develop the evidence to support (or oppose) the adoption of genomic medicine interventions by patients, providers, and payers.
  • Loading...
    Thumbnail Image
    Item
    Implementing a pragmatic clinical trial to tailor opioids for acute pain on behalf of the IGNITE ADOPT PGx investigators.
    (Wiley, 2022-07-28) Cavallari, Larisa H.; Cicali, Emily; Wiisanen, Kristin; Fillingim, Roger B.; Chakraborty, Hrishikesh; Myers, Rachel A.; Blake, Kathryn V.; Asiyanbola, Bolanle; Baye, Jordan F.; Bronson, Wesley H.; Cook, Kelsey J.; Elwood, Erica N.; Gray, Chancellor F.; Gong, Yan; Hines, Lindsay; Kannry, Joseph; Kucher, Natalie; Lynch, Sheryl; Nguyen, Khoa A.; Obeng, Aniwaa Owusu; Pratt, Victoria M.; Prieto, Hernan A.; Ramos, Michelle; Sadeghpour, Azita; Singh, Rajbir; Rosenman, Marc; Starostik, Petr; Thomas, Cameron D.; Tillman, Emma; Dexter, Paul R.; Horowitz, Carol R.; Orlando, Lori A.; Peterson, Josh F.; Skaar, Todd C.; Van Driest, Sara L.; Volpi, Simona; Voora, Deepak; Parvataneni, Hari K.; Johnson, Julie A.
    Opioid prescribing for postoperative pain management is challenging because of inter-patient variability in opioid response and concern about opioid addiction. Tramadol, hydrocodone, and codeine depend on the cytochrome P450 2D6 (CYP2D6) enzyme for formation of highly potent metabolites. Individuals with reduced or absent CYP2D6 activity (i.e., intermediate metabolizers [IMs] or poor metabolizers [PMs], respectively) have lower concentrations of potent opioid metabolites and potentially inadequate pain control. The primary objective of this prospective, multicenter, randomized pragmatic trial is to determine the effect of postoperative CYP2D6-guided opioid prescribing on pain control and opioid usage. Up to 2020 participants, age ≥8 years, scheduled to undergo a surgical procedure will be enrolled and randomized to immediate pharmacogenetic testing with clinical decision support (CDS) for CYP2D6 phenotype-guided postoperative pain management (intervention arm) or delayed testing without CDS (control arm). CDS is provided through medical record alerts and/or a pharmacist consult note. For IMs and PM in the intervention arm, CDS includes recommendations to avoid hydrocodone, tramadol, and codeine. Patient-reported pain-related outcomes are collected 10 days and 1, 3, and 6 months after surgery. The primary outcome, a composite of pain intensity and opioid usage at 10 days postsurgery, will be compared in the subgroup of IMs and PMs in the intervention (n = 152) versus the control (n = 152) arm. Secondary end points include prescription pain medication misuse scores and opioid persistence at 6 months. This trial will provide data on the clinical utility of CYP2D6 phenotype-guided opioid selection for improving postoperative pain control and reducing opioid-related risks.
  • Loading...
    Thumbnail Image
    Item
    Multi-Institutional Implementation of Clinical Decision Support for APOL1, NAT2, and YEATS4 Genotyping in Antihypertensive Management
    (MDPI, 2021-05-27) Schneider, Thomas M.; Eadon, Michael T.; Cooper-DeHoff, Rhonda M.; Cavanaugh, Kerri L.; Nguyen, Khoa A.; Arwood, Meghan J.; Tillman, Emma M.; Pratt, Victoria M.; Dexter, Paul R.; McCoy, Allison B.; Orlando, Lori A.; Scott, Stuart A.; Nadkarni, Girish N.; Horowitz, Carol R.; Kannry, Joseph L.; Medical and Molecular Genetics, School of Medicine
    (1) Background: Clinical decision support (CDS) is a vitally important adjunct to the implementation of pharmacogenomic-guided prescribing in clinical practice. A novel CDS was sought for the APOL1, NAT2, and YEATS4 genes to guide optimal selection of antihypertensive medications among the African American population cared for at multiple participating institutions in a clinical trial. (2) Methods: The CDS committee, made up of clinical content and CDS experts, developed a framework and contributed to the creation of the CDS using the following guiding principles: 1. medical algorithm consensus; 2. actionability; 3. context-sensitive triggers; 4. workflow integration; 5. feasibility; 6. interpretability; 7. portability; and 8. discrete reporting of lab results. (3) Results: Utilizing the principle of discrete patient laboratory and vital information, a novel CDS for APOL1, NAT2, and YEATS4 was created for use in a multi-institutional trial based on a medical algorithm consensus. The alerts are actionable and easily interpretable, clearly displaying the purpose and recommendations with pertinent laboratory results, vitals and links to ordersets with suggested antihypertensive dosages. Alerts were either triggered immediately once a provider starts to order relevant antihypertensive agents or strategically placed in workflow-appropriate general CDS sections in the electronic health record (EHR). Detailed implementation instructions were shared across institutions to achieve maximum portability. (4) Conclusions: Using sound principles, the created genetic algorithms were applied across multiple institutions. The framework outlined in this study should apply to other disease-gene and pharmacogenomic projects employing CDS.
  • Loading...
    Thumbnail Image
    Item
    Qualitative study of system-level factors related to genomic implementation
    (Springer Nature, 2019-07) Zebrowski, Alexis M.; Ellis, Darcy E.; Barg, Frances K.; Sperber, Nina R.; Bernhardt, Barbara A.; Denny, Joshua C.; Dexter, Paul R.; Ginsburg, Geoffrey S.; Horowitz, Carol R.; Johnson, Julie A.; Levy, Mia A.; Orlando, Lori A.; Pollin, Toni I.; Skaar, Todd C.; Kimmel, Stephen E.; Medicine, School of Medicine
    PURPOSE: Research on genomic medicine integration has focused on applications at the individual level, with less attention paid to implementation within clinical settings. Therefore, we conducted a qualitative study using the Consolidated Framework for Implementation Research (CFIR) to identify system-level factors that played a role in implementation of genomic medicine within Implementing GeNomics In PracTicE (IGNITE) Network projects. METHODS: Up to four study personnel, including principal investigators and study coordinators from each of six IGNITE projects, were interviewed using a semistructured interview guide that asked interviewees to describe study site(s), progress at each site, and factors facilitating or impeding project implementation. Interviews were coded following CFIR inner-setting constructs. RESULTS: Key barriers included (1) limitations in integrating genomic data and clinical decision support tools into electronic health records, (2) physician reluctance toward genomic research participation and clinical implementation due to a limited evidence base, (3) inadequate reimbursement for genomic medicine, (4) communication among and between investigators and clinicians, and (5) lack of clinical and leadership engagement. CONCLUSION: Implementation of genomic medicine is hindered by several system-level barriers to both research and practice. Addressing these barriers may serve as important facilitators for studying and implementing genomics in practice.
  • Loading...
    Thumbnail Image
    Item
    Strategies to Integrate Genomic Medicine into Clinical Care: Evidence from the IGNITE Network
    (MDPI, 2021-07-08) Sperber, Nina R.; Dong, Olivia M.; Roberts, Megan C.; Dexter, Paul; Elsey, Amanda R.; Ginsburg, Geoffrey S.; Horowitz, Carol R.; Johnson, Julie A.; Levy, Kenneth D.; Ong, Henry; Peterson, Josh F.; Pollin, Toni I.; Rakhra-Burris, Tejinder; Ramos, Michelle A.; Skaar, Todd C.; Orlando, Lori A.; Medicine, School of Medicine
    The complexity of genomic medicine can be streamlined by implementing some form of clinical decision support (CDS) to guide clinicians in how to use and interpret personalized data; however, it is not yet clear which strategies are best suited for this purpose. In this study, we used implementation science to identify common strategies for applying provider-based CDS interventions across six genomic medicine clinical research projects funded by an NIH consortium. Each project’s strategies were elicited via a structured survey derived from a typology of implementation strategies, the Expert Recommendations for Implementing Change (ERIC), and follow-up interviews guided by both implementation strategy reporting criteria and a planning framework, RE-AIM, to obtain more detail about implementation strategies and desired outcomes. We found that, on average, the three pharmacogenomics implementation projects used more strategies than the disease-focused projects. Overall, projects had four implementation strategies in common; however, operationalization of each differed in accordance with each study’s implementation outcomes. These four common strategies may be important for precision medicine program implementation, and pharmacogenomics may require more integration into clinical care. Understanding how and why these strategies were successfully employed could be useful for others implementing genomic or precision medicine programs in different contexts.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University