- Browse by Author
Browsing by Author "Opyrchal, Mateusz"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item A T Cell‐Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy(Wiley, 2023) Zhou, Zhuolong; Van der Jeught, Kevin; Li, Yujing; Sharma, Samantha; Yu, Tao; Moulana, Ishara; Liu, Sheng; Wan, Jun; Territo, Paul R.; Opyrchal, Mateusz; Zhang, Xinna; Wan, Guohui; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicinePancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune‐resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high‐throughput drug screen platform is established with the newly developed T cell‐incorporated pancreatic tumor organoid model. Tumor‐specific T cells are included in the pancreatic tumor organoids by two‐step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid‐based screen, epigenetic inhibitors ITF2357 and I‐BET151 are identified, which in combination with anti‐PD‐1 based therapy show considerably greater anti‐tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up‐regulates the MHC‐I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.Item Adaptive phase I-II clinical trial designs identifying optimal biological doses for targeted agents and immunotherapies(Sage, 2024) Zang, Yong; Guo, Beibei; Qiu, Yingjie; Liu, Hao; Opyrchal, Mateusz; Lu, Xiongbin; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthTargeted agents and immunotherapies have revolutionized cancer treatment, offering promising options for various cancer types. Unlike traditional therapies the principle of "more is better" is not always applicable to these new therapies due to their unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes. This review article examines several innovative phase I-II clinical trial designs that utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent patients and identify the optimal biological dose, maximizing the overall therapeutic effect. Specifically, we highlight three categories of phase I-II designs: efficacy-driven, utility-based, and designs incorporating multiple efficacy endpoints. For each design, we review the dose-outcome model, the definition of the optimal biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO designs. Finally, we provide a classification tree to summarize the designs discussed in this article.Item Augmenting antibody response to EGF-depleting immunotherapy: Findings from a phase I trial of CIMAvax-EGF in combination with nivolumab in advanced stage NSCLC(Frontiers Media, 2022-08-03) Evans, Rachel; Lee, Kelvin; Wallace, Paul K.; Reid, Mary; Muhitch, Jason; Dozier, Askia; Mesa, Circe; Luaces, Patricia L.; Santos-Morales, Orestes; Groman, Adrienne; Cedeno, Carlos; Cinquino, Aileen; Fisher, Daniel T.; Puzanov, Igor; Opyrchal, Mateusz; Fountzilas, Christos; Dai, Tong; Ernstoff, Marc; Attwood, Kristopher; Hutson, Alan; Johnson, Candace; Mazorra, Zaima; Saavedra, Danay; Leon, Kalet; Lage, Agustin; Crombet, Tania; Dy, Grace K.; Medicine, School of MedicineBackground: CIMAvax-EGF is an epidermal growth factor (EGF)-depleting immunotherapy which has shown survival benefit as a switch maintenance treatment after platinum-based chemotherapy in advanced non-small cell lung cancer (NSCLC). The primary objective of this trial is to establish the safety and recommended phase II dose (RP2D) of CIMAvax-EGF in combination with nivolumab as second-line therapy for NSCLC. Methods: Patients with immune checkpoint inhibitor-naive metastatic NSCLC were enrolled using a "3+3" dose-escalation design. Toxicities were graded according to CTCAE V4.03. Thirteen patients (one unevaluable), the majority with PD-L1 0%, were enrolled into two dose levels of CIMAvax-EGF. Findings: The combination was determined to be safe and tolerable. The recommended phase 2 dose of CIMAvax-EGF was 2.4 mg. Humoral response to CIMAvax-EGF was achieved earlier and in a greater number of patients with the combination compared to historical control. Four out of 12 evaluable patients had an objective response.Item Circulating tumour DNA characterisation of invasive lobular carcinoma in patients with metastatic breast cancer(Elsevier, 2022) Davis, Andrew A.; Gerratana, Lorenzo; Clifton, Katherine; Medford, Arielle J.; Velimirovic, Marko; Hensing, Whitney L.; Bucheit, Leslie; Shah, Ami N.; D’Amico, Paolo; Reduzzi, Carolina; Zhang, Qiang; Dai, Charles S.; Denault, Elyssa N.; Bagegni, Nusayba A.; Opyrchal, Mateusz; Ademuyiwa, Foluso O.; Bose, Ron; Gradishar, William J.; Behdad, Amir; Ma, Cynthia X.; Bardia, Aditya; Cristofanilli, Massimo; Medicine, School of MedicineBackground: Limited data exist to characterise molecular differences in circulating tumour DNA (ctDNA) for patients with invasive lobular carcinoma (ILC). We analysed metastatic breast cancer patients with ctDNA testing to assess genomic differences among patients with ILC, invasive ductal carcinoma (IDC), and mixed histology. Methods: We retrospectively analysed 980 clinically annotated patients (121 ILC, 792 IDC, and 67 mixed histology) from three academic centers with ctDNA evaluation by Guardant360™. Single nucleotide variations (SNVs), copy number variations (CNVs), and oncogenic pathways were compared across histologies. Findings: ILC was significantly associated with HR+ HER2 negative and HER2 low. SNVs were higher in patients with ILC compared to IDC or mixed histology (Mann Whitney U test, P < 0.05). In multivariable analysis, HR+ HER2 negative ILC was significantly associated with mutations in CDH1 (odds ratio (OR) 9.4, [95% CI 3.3-27.2]), ERBB2 (OR 3.6, [95% confidence interval (CI) 1.6-8.2]), and PTEN (OR 2.5, [95% CI 1.05-5.8]) genes. CDH1 mutations were not present in the mixed histology cohort. Mutations in the PI3K pathway genes (OR 1.76 95% CI [1.18-2.64]) were more common in patients with ILC. In an independent cohort of nearly 7000 metastatic breast cancer patients, CDH1 was significantly co-mutated with targetable alterations (PIK3CA, ERBB2) and mutations associated with endocrine resistance (ARID1A, NF1, RB1, ESR1, FGFR2) (Benjamini-Hochberg Procedure, all q < 0.05). Interpretation: Evaluation of ctDNA revealed differences in pathogenic alterations and oncogenic pathways across breast cancer histologies with implications for histologic classification and precision medicine treatment.Item Downregulation of IRF8 in alveolar macrophages by G-CSF promotes metastatic tumor progression(Elsevier, 2024-02-10) Tzetzo, Stephanie L.; Kramer, Elliot D.; Mohammadpour, Hemn; Kim, Minhyung; Rosario, Spencer R.; Yu, Han; Dolan, Melissa R.; Oturkar, Chetan C.; Morreale, Brian G.; Bogner, Paul N.; Stablewski, Aimee B.; Benavides, Fernando J.; Brackett, Craig M.; Ebos, John M. L.; Das, Gokul M.; Opyrchal, Mateusz; Nemeth, Michael J.; Evans, Sharon S.; Abrams, Scott I.; Medicine, School of MedicineTissue-resident macrophages (TRMs) are abundant immune cells within pre-metastatic sites, yet their functional contributions to metastasis remain incompletely understood. Here, we show that alveolar macrophages (AMs), the main TRMs of the lung, are susceptible to downregulation of the immune stimulatory transcription factor IRF8, impairing anti-metastatic activity in models of metastatic breast cancer. G-CSF is a key tumor-associated factor (TAF) that acts upon AMs to reduce IRF8 levels and facilitate metastasis. Translational relevance of IRF8 downregulation was observed among macrophage precursors in breast cancer and a CD68hiIRF8loG-CSFhi gene signature suggests poorer prognosis in triple-negative breast cancer (TNBC), a G-CSF-expressing subtype. Our data highlight the underappreciated, pro-metastatic roles of AMs in response to G-CSF and identify the contribution of IRF8-deficient AMs to metastatic burden. AMs are an attractive target of local neoadjuvant G-CSF blockade to recover anti-metastatic activity.Item Editorial: Novel signaling pathways and therapy in breast cancer(Frontiers Media, 2023-05-16) Katsuta, Eriko; Opyrchal, Mateusz; Medicine, School of MedicineItem Entinostat plus Pembrolizumab in Patients with Metastatic NSCLC Previously Treated with Anti-PD-(L)1 Therapy(American Association for Cancer Research, 2021) Hellmann, Matthew D.; Jänne, Pasi A.; Opyrchal, Mateusz; Hafez, Navid; Raez, Luis E.; Gabrilovich, Dmitry; Wang, Fang; Trepel, Jane B.; Lee, Min-Jung; Yuno, Akira; Lee, Sunmin; Brouwer, Susan; Sankoh, Serap; Wang, Lei; Tamang, David; Schmidt, Emmett; Meyers, Michael L.; Ramalingam, Suresh S.; Shum, Elaine; Ordentlich, Peter; Medicine, School of MedicinePurpose: New therapies are needed to treat immune checkpoint inhibitor-resistant non-small cell lung cancer (NSCLC) and identify biomarkers to personalize treatment. Epigenetic therapies, including histone deacetylase inhibitors, may synergize with programmed cell death-1 (PD-1) blockade to overcome resistance. We report outcomes in patients with anti-programmed cell death ligand-1 [PD-(L)1]-resistant/refractory NSCLC treated with pembrolizumab plus entinostat in ENCORE 601. Patients and methods: The expansion cohort of ENCORE 601 included patients with NSCLC who previously experienced disease progression with immune checkpoint inhibitors. The primary endpoint for the phase II expansion cohort is overall response rate (ORR); safety, tolerability, and exploratory endpoints are described. Results: Of 76 treated patients, 71 were evaluable for efficacy. immune-regulated RECIST-assessed ORR was 9.2% [95% confidence interval (CI): 3.8-18.1], which did not meet the prespecified threshold for positivity. Median duration of response was 10.1 months (95% CI: 3.9-not estimable), progression-free survival (PFS) at 6 months was 22%, median PFS was 2.8 months (95% CI: 1.5-4.1), and median overall survival was 11.7 months (95% CI: 7.6-13.4). Benefit was enriched among patients with high levels of circulating classical monocytes at baseline. Baseline tumor PD-L1 expression and IFNγ gene expression were not associated with benefit. Treatment-related grade ≥3 adverse events occurred in 41% of patients. Conclusions: In anti-PD-(L)1-experienced patients with NSCLC, entinostat plus pembrolizumab did not achieve the primary response rate endpoint but provided a clinically meaningful benefit, with objective response in 9% of patients. No new toxicities, including immune-related adverse events, were seen for either drug. Future studies will continue to evaluate the association of monocyte levels and response.Item Harnessing tumorous flaws for immune supremacy: is miRNA-155 the weak link in breast cancer progression?(The American Society for Clinical Investigation, 2022-10-03) Sharma, Samantha; Opyrchal, Mateusz; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineWith the advent of immune checkpoint blockade (ICB) therapy, treatment strategies for late-stage cancers have seen a radical advancement. In this issue of the JCI, Wang et al. characterize the functional role of miR-155 in breast cancer and its potential in harnessing the efficacy of immunotherapy. The study reports that high expression levels of miR-155 in breast cancer cells downregulated suppressor of cytokine signaling 1 (SOCS1), increased the phosphorylated STAT1 (pSTAT1)/pSTAT3 ratio, and thereby stimulated chemoattractants for tumor infiltration of effector T cells. Moreover, miR-155 overexpression set the stage for ICB therapy via increased programmed death ligand 1 (PD-L1) expression on cancer cells and enhanced immunological memory response via the release of miR-155-containing extracellular vesicles. Collectively, these data suggest that miR-155 is a strong candidate as a prognostic biomarker for ICB therapy.Item Immunogenomic profiling and pathological response results from a clinical trial of docetaxel and carboplatin in triple negative breast cancer(Springer, 2021) Ademuyiwa, Foluso O.; Chen, Ina; Luo, Jingqin; Rimawi, Mothaffar F.; Hagemann, Ian S.; Fisk, Bryan; Jeffers, Gejae; Skidmore, Zachary L.; Basu, Anamika; Richters, Megan; Ma, Cynthia X.; Weilbaecher, Katherine; Davis, Jennifer; Suresh, Rama; Peterson, Lindsay L.; Bose, Ron; Bagegni, Nusayba; Rigden, Caron E.; Frith, Ashley; Rearden, Timothy P.; Hernandez-Aya, Leonel F.; Roshal, Anna; Clifton, Katherine; Opyrchal, Mateusz; Akintola-Ogunremi, Olaronke; Lee, Byung Ha; Ferrando-Martinez, Sara; Church, Sarah E.; Anurag, Meenakshi; Ellis, Matthew J.; Gao, Feng; Gillanders, William; Griffith, Obi L.; Griffith, Malachi; Medicine, School of MedicinePurpose: Patients with triple-negative breast cancer (TNBC) who do not achieve pathological complete response (pCR) following neoadjuvant chemotherapy have a high risk of recurrence and death. Molecular characterization may identify patients unlikely to achieve pCR. This neoadjuvant trial was conducted to determine the pCR rate with docetaxel and carboplatin and to identify molecular alterations and/or immune gene signatures predicting pCR. Experimental design: Patients with clinical stages II/III TNBC received 6 cycles of docetaxel and carboplatin. The primary objective was to determine if neoadjuvant docetaxel and carboplatin would increase the pCR rate in TNBC compared to historical expectations. We performed whole-exome sequencing (WES) and immune profiling on pre-treatment tumor samples to identify alterations that may predict pCR. Thirteen matching on-treatment samples were also analyzed to assess changes in molecular profiles. Results: Fifty-eight of 127 (45.7%) patients achieved pCR. There was a non-significant trend toward higher mutation burden for patients with residual cancer burden (RCB) 0/I versus RCB II/III (median 80 versus 68 variants, p 0.88). TP53 was the most frequently mutated gene, observed in 85.7% of tumors. EGFR, RB1, RAD51AP2, SDK2, L1CAM, KPRP, PCDHA1, CACNA1S, CFAP58, COL22A1, and COL4A5 mutations were observed almost exclusively in pre-treatment samples from patients who achieved pCR. Seven mutations in PCDHA1 were observed in pre-treatment samples from patients who did not achieve pCR. Several immune gene signatures including IDO1, PD-L1, interferon gamma signaling, CTLA4, cytotoxicity, tumor inflammation signature, inflammatory chemokines, cytotoxic cells, lymphoid, PD-L2, exhausted CD8, Tregs, and immunoproteasome were upregulated in pre-treatment samples from patients who achieved pCR. Conclusion: Neoadjuvant docetaxel and carboplatin resulted in a pCR of 45.7%. WES and immune profiling differentiated patients with and without pCR.Item Increased PIEZO1 Expression Is Associated with Worse Clinical Outcomes in Hormone-Receptor-Negative Breast Cancer Patients(MDPI, 2024-02-06) Poole, Rylee Ann; Wang, Qingfei; Ray, Alo; Takabe, Kazuaki; Opyrchal, Mateusz; Katsuta, Eriko; Medicine, School of MedicinePIEZO1 plays a crucial role in the human body as a mechanosensory ion channel. It has been demonstrated that PIEZO1 is important in tissue development and regulating many essential physiological processes. Studies have suggested that the PIEZO1 ion channel plays a role in invasion and progression in cancer; elevated levels of PIEZO1 have been correlated with increased migration in breast cancer cells, chemo-resistance and invasion in gastric cancer cells, and increased invasion of osteosarcoma cells. In addition, high PIEZO1 expression levels were correlated with a worse prognosis in glioma patients. On the other hand, studies in lung cancer have attributed high PIEZO1 levels to better patient outcomes. However, the clinical impact of PIEZO1 in breast cancer is not well characterized. Therefore, our goal was to determine the clinical relevance of PIEZO1 in breast cancer. An analysis of breast cancer data from The Cancer Genome Atlas (TCGA) was conducted to investigate PIEZO1 expression levels and correlation to survival, followed by validation in an independent dataset, GSE3494. We also performed gene set enrichment analysis (GSEA) and pathway enrichment analysis. We also analyzed the immune cell composition in breast tumors from TCGA through a CIBERSORT algorithm. Our results demonstrated that the PIEZO1 expression levels are higher in hormone-receptor (HR)-negative than in HR-positive cohorts. High PIEZO1 expression is correlated with a significant decrease in survival in HR-negative cohorts, especially in triple-negative breast cancer (TNBC), suggesting that PIEZO1 could be utilized as a prognostic biomarker in HR-negative breast cancer. GSEA showed that various signaling pathways associated with more invasive phenotypes and resistance to treatments, including epithelial-mesenchymal transition (EMT), hypoxia, and multiple signaling pathways, are enriched in high-PIEZO1 HR-negative tumors. Our results also demonstrated a decrease in CD8+ and CD4+ T cell infiltration in high-PIEZO1 HR-negative tumors. Further investigations are necessary to elucidate the mechanistic roles of PIEZO1 in HR-negative breast cancer.