- Browse by Author
Browsing by Author "Ongoiba, Aissata"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Accumulation of Neutrophil Phagocytic Antibody Features Tracks With Naturally Acquired Immunity Against Malaria in Children(Oxford University Press, 2023) Nziza, Nadege; Tran, Tuan M.; DeRiso, Elizabeth A.; Dolatshahi, Sepideh; Herman, Jonathan D.; de Lacerda, Luna; Junqueira, Caroline; Lieberman, Judy; Ongoiba, Aissata; Doumbo, Safiatou; Kayentao, Kassoum; Traore, Boubacar; Crompton, Peter D.; Alter, Galit; Medicine, School of MedicineBackground: Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood. Methods: Using systems serology, we characterized sporozoite- and merozoite-specific antibody profiles of uninfected Malian children before the malaria season who differed in their ability to control parasitemia and fever following Plasmodium falciparum (Pf) infection. We then assessed the contributions of individual traits to overall clinical outcomes, focusing on the immunodominant sporozoite CSP and merozoite AMA1 and MSP1 antigens. Results: Humoral immunity evolved with age, with an expansion of both magnitude and functional quality, particularly within blood-stage phagocytic antibody activity. Moreover, concerning clinical outcomes postinfection, protected children had higher antibody-dependent neutrophil activity along with higher levels of MSP1-specific IgG3 and IgA and CSP-specific IgG3 and IgG4 prior to the malaria season. Conclusions: These data point to the natural evolution of functional humoral immunity to Pf with age and highlight particular antibody Fc-effector profiles associated with the control of malaria in children, providing clues for the design of next-generation vaccines or therapeutics.Item Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota(American Society for Microbiology, 2023) Van Den Ham, Kristin M.; Little, Morgan R.; Bednarski, Olivia J.; Fusco, Elizabeth M.; Mandal, Rabindra K.; Mitra, Riten; Li, Shanping; Doumbo, Safiatou; Doumtabe, Didier; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D.; Schmidt, Nathan W.; Pediatrics, School of MedicineThere is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.Item Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali(The American Society of Tropical Medicine and Hygiene, 2018-07) Ouattara, Amed; Tran, Tuan M.; Doumbo, Safiatou; Matthew, Adams; Agrawal, Sonia; Niangaly, Amadou; Nelson-Owens, Sara; Doumtabé, Didier; Tolo, Youssouf; Ongoiba, Aissata; Takala-Harrison, Shannon; Traoré, Boubacar; Silva, Joana C.; Crompton, Peter D.; Doumbo, Ogobara K.; Plowe, Christopher V.; Medicine, School of MedicineReticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte-binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte-binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.Item Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season(Nature, 2020-12) Andrade, Carolina M.; Fleckenstein, Hannah; Thomson-Luque, Richard; Doumbo, Safiatou; Lima, Nathalia F.; Anderson, Carrie; Hibbert, Julia; Hopp, Christine S.; Tran, Tuan M.; Li, Shanping; Niangaly, Moussa; Cisse, Hamidou; Doumtabe, Didier; Skinner, Jeff; Sturdevant, Dan; Ricklefs, Stacy; Virtaneva, Kimmo; Asghar, Muhammad; Vafa Homann, Manijeh; Turner, Louise; Martins, Joana; Allman, Erik L.; N'Dri, Marie-Esther; Winkler, Volker; Llinás, Manuel; Lavazec, Catherine; Martens, Craig; Farnert, Anna; Kayentao, Kassoum; Ongoiba, Aissata; Lavstsen, Thomas; Osório, Nuno S.; Otto, Thomas D.; Recker, Mario; Traore, Boubacar; Crompton, Peter D.; Portugal, Silvia; Medicine, School of MedicineThe dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.Item Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection(American Society for Clinical Investigation, 2020-05-19) Obeng-Adjei, Nyamekye; Larremore, Daniel B.; Turner, Louise; Ongoiba, Aissata; Li, Shanping; Doumbo, Safiatou; Yazew, Takele B.; Kayentao, Kassoum; Miller, Louis H.; Traore, Boubacar; Pierce, Susan K.; Buckee, Caroline O.; Lavstsen, Thomas; Crompton, Peter D.; Tran, Tuan M.; Medicine, School of MedicineBACKGROUND Malaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum–infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria. METHODS We evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission. RESULTS Using longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes. CONCLUSION This study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant–specific antibodies. TRIAL REGISTRATION ClinicalTrials.gov NCT01322581.Item A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation(Elsevier, 2019-10-15) Tran, Tuan M.; Guha, Rajan; Portugal, Silvia; Skinner, Jeff; Ongoiba, Aissata; Bhardwaj, Jyoti; Jones, Marcus; Moebius, Jacqueline; Venepally, Pratap; Doumbo, Safiatou; DeRiso, Elizabeth A.; Li, Shanping; Vijayan, Kamalakannan; Anzick, Sarah L.; Hart, Geoffrey T.; O’Connell, Elise M.; Doumbo, Ogobara K.; Kaushansky, Alexis; Alter, Galit; Felgner, Phillip L.; Lorenzi, Hernan; Kayentao, Kassoum; Traore, Boubacar; Kirkness, Ewen F.; Crompton, Peter D.; Medicine, School of MedicineImmunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment; upregulation of T-helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses; and p53 activation associated with control of malarial fever and coordinated with Pf-specific IgG and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.Item Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study(Oxford University Press, 2023) Bhardwaj, Jyoti; Upadhye, Aditi; Gaskin, Erik L.; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D.; Tran, Tuan M.; Medicine, School of MedicineBackground: TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. Methods: p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. Results: Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. Conclusions: These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.Item Susceptibility to febrile malaria is associated with an inflammatory gut microbiome(Research Square, 2024-04-04) Schmidt, Nathan; Van Den Ham, Kristin; Bower, Layne; Li, Shanping; Lorenzi, Hernan; Doumbo, Safiatou; Doumtabe, Didier; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter; Medicine, School of MedicineMalaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood. Here, we demonstrate in Malian children that susceptibility to febrile malaria following infection with Plasmodium falciparum is associated with the composition of the gut microbiome prior to the malaria season. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children had a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was enriched for bacteria associated with inflammation, mucin degradation, gut permeability and inflammatory bowel disorders (e.g., Ruminococcus gauvreauii, Ruminococcus torques, Dorea formicigenerans, Dorea longicatena, Lachnoclostridium phocaeense and Lachnoclostridium sp. YL32). However, the susceptible children also had a greater abundance of bacteria known to produce anti-inflammatory short-chain fatty acids and those associated with favorable prognosis and remission following dysbiotic intestinal events (e.g., Anaerobutyricum hallii, Blautia producta and Sellimonas intestinalis). Metabolomics analysis of the human fecal samples corroborated the existence of inflammatory and recovery-associated features within the gut microbiome of the susceptible children. There was an enrichment of nitric oxide-derived DNA adducts (deoxyinosine and deoxyuridine) and long-chain fatty acids, the absorption of which has been shown to be inhibited by inflamed intestinal epithelial cells, and a decrease in the abundance of mucus phospholipids. Nevertheless, there were also increased levels of pseudouridine and hypoxanthine, which have been shown to be regulated in response to cellular stress and to promote recovery following injury or hypoxia. Overall, these results indicate that the gut microbiome may contribute malaria pathogenesis and suggest that therapies targeting intestinal inflammation could decrease malaria susceptibility.Item Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria(SpringerNature, 2016-08-10) Tran, Tuan M.; Jones, Marcus B.; Ongoiba, Aissata; Bijker, Else M.; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G.; Whalen, Elizabeth; Presnell, Scott; O’Connell, Elise M.; Kayentao, Kassoum; Doumbo, Ogobara K.; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B.; Ottenhoff, Tom H. M.; Haks, Mariëlle C.; Traore, Boubacar; Kirkness, Ewen F.; Sauerwein, Robert W.; Crompton, Peter D.; Department of Medicine, IU School of MedicineIdentifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria.Item Treatment of Chronic Asymptomatic Plasmodium falciparum Infection Does Not Increase the Risk of Clinical Malaria Upon Reinfection(Oxford, 2017-03) Portugal, Silvia; Tran, Tuan M.; Ongoiba, Aissata; Bathily, Abroudramane; Li, Shanping; Doumbo, Safiatou; Skinner, Jeff; Doumtabe, Didier; Kone, Younoussou; Sangala, Jules; Jain, Aarti; Davies, D. Huw; Hung, Christopher; Liang, Li; Ricklefs, Stacy; Homann, Manijeh Vafa; Felgner, Philip L.; Porcella, Stephen F.; Färnert, Anna; Doumbo, Ogobara K.; Kayentao, Kassoum; Greenwood, Brian M.; Traore, Boubacar; Crompton, Peter D.; Medicine, School of MedicineBackground. Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. Methods. In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum–specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Results. Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum–specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. Conclusions. These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.